A. P. Nebesskaya, A. V. Balynin, A. A. Yushkin, A. V. Markelov, V. V. Volkov
{"title":"Ultrafiltration Separation of Crude Oil and Waste Oil","authors":"A. P. Nebesskaya, A. V. Balynin, A. A. Yushkin, A. V. Markelov, V. V. Volkov","doi":"10.1134/S2517751624600821","DOIUrl":null,"url":null,"abstract":"<p>Approximately 90 million barrels of crude oil are processed daily worldwide, with separation processes such as distillation accounting for 10–15% of global energy consumption. In this regard, the scientific community is faced with the ambitious task of finding alternative fractionation technologies that are not based on the volatility of individual components of complex liquid mixtures. The driving force of ultrafiltration is the pressure difference across the membrane. Therefore, separation occurs without phase transitions and with significantly lower energy consumption compared to distillation. In recent years, there has been a growing interest in the development of membrane technologies for the purification and reuse of used lubricating oil. One of the key challenges in membrane filtration of oil and lubricants is their high viscosity. This review examines two approaches to reducing the viscosity of such systems: filtration at elevated temperatures and pre-dilution of the feedstock followed by filtration. A literature analysis revealed that in most cases, ultrafiltration with ceramic membranes is employed in the former approach, while the latter uses more cost-effective polymer membranes. Special attention in the review is given to the issues of membrane fouling and regeneration.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"6 5","pages":"350 - 356"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751624600821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Approximately 90 million barrels of crude oil are processed daily worldwide, with separation processes such as distillation accounting for 10–15% of global energy consumption. In this regard, the scientific community is faced with the ambitious task of finding alternative fractionation technologies that are not based on the volatility of individual components of complex liquid mixtures. The driving force of ultrafiltration is the pressure difference across the membrane. Therefore, separation occurs without phase transitions and with significantly lower energy consumption compared to distillation. In recent years, there has been a growing interest in the development of membrane technologies for the purification and reuse of used lubricating oil. One of the key challenges in membrane filtration of oil and lubricants is their high viscosity. This review examines two approaches to reducing the viscosity of such systems: filtration at elevated temperatures and pre-dilution of the feedstock followed by filtration. A literature analysis revealed that in most cases, ultrafiltration with ceramic membranes is employed in the former approach, while the latter uses more cost-effective polymer membranes. Special attention in the review is given to the issues of membrane fouling and regeneration.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.