Jing Zhang, Zhuo Yang, Tianhao Wu, Zhichao Yao, Chen Lin, Yan Su
{"title":"Modeling and Analysis of Vibration Coupling in Differential Common-Based MEMS Resonators.","authors":"Jing Zhang, Zhuo Yang, Tianhao Wu, Zhichao Yao, Chen Lin, Yan Su","doi":"10.3390/mi16020169","DOIUrl":null,"url":null,"abstract":"<p><p>In differential MEMS resonant sensors, a pair of resonators are interconnected with other structural components while sharing a common substrate. This leads to mutual coupling of vibration energy between resonators, interfering with their frequency outputs and affecting the sensor's static performance. This paper aims to model and analyze the vibration coupling phenomena in differential common-based MEMS resonators (DCMR). A mechanical model of the DCMR structure was established and refined through finite element simulation analysis. Theoretical calculations yielded vibration coupling curves for two typical silicon resonant accelerometer (SRA) structures containing DCMR: SRA-V1 and SRA-V2, with coupling stiffness values of 2.361 × 10<sup>-4</sup> N/m and 1.370 × 10<sup>-2</sup> N/m, respectively. An experimental test system was constructed to characterize the vibration coupling behavior. The results provided coupling amplitude-frequency characteristic curves and coupling stiffness values (7.073 × 10<sup>-4</sup> N/m and 1.068 × 10<sup>-2</sup> N/m for SRA-V1 and SRA-V2, respectively) that validated the theoretical analysis and computational model. This novel approach enables effective evaluation of coupling intensity between 5resonators and provides a theoretical foundation for optimizing device structural designs.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020169","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In differential MEMS resonant sensors, a pair of resonators are interconnected with other structural components while sharing a common substrate. This leads to mutual coupling of vibration energy between resonators, interfering with their frequency outputs and affecting the sensor's static performance. This paper aims to model and analyze the vibration coupling phenomena in differential common-based MEMS resonators (DCMR). A mechanical model of the DCMR structure was established and refined through finite element simulation analysis. Theoretical calculations yielded vibration coupling curves for two typical silicon resonant accelerometer (SRA) structures containing DCMR: SRA-V1 and SRA-V2, with coupling stiffness values of 2.361 × 10-4 N/m and 1.370 × 10-2 N/m, respectively. An experimental test system was constructed to characterize the vibration coupling behavior. The results provided coupling amplitude-frequency characteristic curves and coupling stiffness values (7.073 × 10-4 N/m and 1.068 × 10-2 N/m for SRA-V1 and SRA-V2, respectively) that validated the theoretical analysis and computational model. This novel approach enables effective evaluation of coupling intensity between 5resonators and provides a theoretical foundation for optimizing device structural designs.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.