Dynamic Response and Energy Conversion of Coupled Cantilevers with Dual Piezoelectric-Triboelectric Harvesting Mechanisms.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2025-01-31 DOI:10.3390/mi16020182
Mohammad Alghamaz, Leila Donyaparastlivari, Alwathiqbellah Ibrahim
{"title":"Dynamic Response and Energy Conversion of Coupled Cantilevers with Dual Piezoelectric-Triboelectric Harvesting Mechanisms.","authors":"Mohammad Alghamaz, Leila Donyaparastlivari, Alwathiqbellah Ibrahim","doi":"10.3390/mi16020182","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a Hybrid Piezoelectric-Triboelectric Energy Harvester (HPTEH) composed of two coupled cantilever beams, designed to enhance energy generation and broaden bandwidth by combining piezoelectric and triboelectric mechanisms. A theoretical 2-DOF lumped model was developed and validated with experimental results, demonstrating good agreement. Experimental findings reveal that Beam I exhibits a softening effect, with resonance frequencies shifting to lower values and increased displacement amplitudes under higher excitation levels due to material nonlinearities and strain-induced voltage generation. Beam II, in contrast, displays a hardening effect, with resonance frequencies increasing as triboelectric interactions enhance stiffness at higher excitation levels. Coupling dynamics reveal asymmetry, with Beam I significantly influencing Beam II in the higher frequency range, while Beam II's impact on Beam I remains minimal. Phase portraits highlight the dynamic coupling and energy transfer between the beams, particularly near their natural frequencies of 18.6 Hz and 40.6 Hz, demonstrating complex interactions and energy exchange across a broad frequency range. The synergistic interplay between triboelectric and piezoelectric mechanisms allows the HPTEH to efficiently harvest energy across a wider spectrum, underscoring its potential for advanced energy applications in diverse vibrational environments.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16020182","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a Hybrid Piezoelectric-Triboelectric Energy Harvester (HPTEH) composed of two coupled cantilever beams, designed to enhance energy generation and broaden bandwidth by combining piezoelectric and triboelectric mechanisms. A theoretical 2-DOF lumped model was developed and validated with experimental results, demonstrating good agreement. Experimental findings reveal that Beam I exhibits a softening effect, with resonance frequencies shifting to lower values and increased displacement amplitudes under higher excitation levels due to material nonlinearities and strain-induced voltage generation. Beam II, in contrast, displays a hardening effect, with resonance frequencies increasing as triboelectric interactions enhance stiffness at higher excitation levels. Coupling dynamics reveal asymmetry, with Beam I significantly influencing Beam II in the higher frequency range, while Beam II's impact on Beam I remains minimal. Phase portraits highlight the dynamic coupling and energy transfer between the beams, particularly near their natural frequencies of 18.6 Hz and 40.6 Hz, demonstrating complex interactions and energy exchange across a broad frequency range. The synergistic interplay between triboelectric and piezoelectric mechanisms allows the HPTEH to efficiently harvest energy across a wider spectrum, underscoring its potential for advanced energy applications in diverse vibrational environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Editorial for the Special Issue on Recent Advances in Thin Film Electronic Devices.
IF 3.4 3区 材料科学ACS Applied Electronic MaterialsPub Date : 2022-09-01 DOI: 10.3390/mi13091445
Chengyuan Dong
Guest Editorial – Special Issue on ‘Memristors: Devices, Models, Circuits, Systems, and Applications’
IF 2.3 3区 工程技术International Journal of Circuit Theory and ApplicationsPub Date : 2018-01-22 DOI: 10.1002/cta.2444
Ronald Tetzlaff, Fernando Corinto, Rogrigo Picos, Maciej Ogorzalek
Editorial for the Special Issue on Robust Microelectronic Devices
IF 2.7 4区 材料科学CrystalsPub Date : 2021-12-23 DOI: 10.3390/cryst12010016
M. Waltl
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mode Optimization of Microelectromechanical-System Traveling-Wave Ultrasonic Motor Based on Kirigami. An Optimized PZT-FBG Voltage/Temperature Sensor. Coded Ultrasonic Ranging for the Distance Measurement of Coaxial Rotor Blades. FLIM-Phasor Analysis (FLIM-ϕ) of Aβ-Induced Membrane Order Alterations: Towards a Cell-Based Biosensor for Early Alzheimer's Disease Diagnosis. Dielectrophoretic Microfluidic Designs for Precision Cell Enrichments and Highly Viable Label-Free Bacteria Recovery from Blood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1