Hanshu Wu, Yunping Shi, Ting-Chih Lin, Ayesha Abdullah, Michael R. Bockstaller, Krzysztof Matyjaszewski
{"title":"Accelerated Self-Healing and Property Recovery in Brush Particle Solids Featuring Brush Dispersity","authors":"Hanshu Wu, Yunping Shi, Ting-Chih Lin, Ayesha Abdullah, Michael R. Bockstaller, Krzysztof Matyjaszewski","doi":"10.1021/acsmacrolett.5c00036","DOIUrl":null,"url":null,"abstract":"Brush particles, hybrid materials consisting of polymer chains tethered to particle surfaces, offer tunable properties that make them promising candidates for advanced functional materials. This study investigated the role of chain dispersity in the viscoelastic self-healing of poly (methyl acrylate) (PMA)-based brush particle solids. Increasing the molecular weight dispersity of grafted chains significantly enhanced both strain-to-fracture and toughness of brush particle solids, while the elastic modulus and glass transition temperature were independent of chain dispersity. Cut-and-adhere testing revealed a significant acceleration of the rate of toughness recovery in high-dispersity systems as compared to low-dispersity analogs for which toughness recovery markedly lagged the recovery of Young’s modulus. The results suggest that structure and property recovery in brush particle solids are sensitive to the dynamical heterogeneity of brush canopies and highlight the role of molecular weight dispersity as a design parameter to enable hybrid materials with advanced self-healing ability.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"51 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.5c00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Brush particles, hybrid materials consisting of polymer chains tethered to particle surfaces, offer tunable properties that make them promising candidates for advanced functional materials. This study investigated the role of chain dispersity in the viscoelastic self-healing of poly (methyl acrylate) (PMA)-based brush particle solids. Increasing the molecular weight dispersity of grafted chains significantly enhanced both strain-to-fracture and toughness of brush particle solids, while the elastic modulus and glass transition temperature were independent of chain dispersity. Cut-and-adhere testing revealed a significant acceleration of the rate of toughness recovery in high-dispersity systems as compared to low-dispersity analogs for which toughness recovery markedly lagged the recovery of Young’s modulus. The results suggest that structure and property recovery in brush particle solids are sensitive to the dynamical heterogeneity of brush canopies and highlight the role of molecular weight dispersity as a design parameter to enable hybrid materials with advanced self-healing ability.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.