Temporal and spatial patterns of N2O emissions in maize/legume strip intercropping: Effects of straw incorporation and crop interactions

IF 5.6 1区 农林科学 Q1 AGRONOMY Field Crops Research Pub Date : 2025-03-10 DOI:10.1016/j.fcr.2025.109850
Jinchuan Zhang , Wei Yao , Yongkang Wen , Xin Qian , Leanne Peixoto , Shengquan Yang , Shaoyong Meng , Yadong Yang , Zhaohai Zeng , Huadong Zang
{"title":"Temporal and spatial patterns of N2O emissions in maize/legume strip intercropping: Effects of straw incorporation and crop interactions","authors":"Jinchuan Zhang ,&nbsp;Wei Yao ,&nbsp;Yongkang Wen ,&nbsp;Xin Qian ,&nbsp;Leanne Peixoto ,&nbsp;Shengquan Yang ,&nbsp;Shaoyong Meng ,&nbsp;Yadong Yang ,&nbsp;Zhaohai Zeng ,&nbsp;Huadong Zang","doi":"10.1016/j.fcr.2025.109850","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><div>Maize/legume intercropping presents a sustainable agricultural strategy to enhance nitrogen use efficiency and mitigate environmental impacts.</div></div><div><h3>Research question</h3><div>The impact of maize/legume strip intercropping on N<sub>2</sub>O emissions, crop yields, and the associated mechanisms are not yet fully understood, particularly in the context of straw incorporation practices.</div></div><div><h3>Methods</h3><div>A two-year field experiment comparing five cropping systems (maize/peanut strip intercropping, maize/soybean strip intercropping, and corresponding monocropping) either with or without straw incorporation.</div></div><div><h3>Results</h3><div>Maize/legume strip intercropping increased yields by 15–24 % and reduced N<sub>2</sub>O emissions by 15–22 % compared to the expected intercropping. This increase in yields, combined with the reduction in N<sub>2</sub>O emissions, led to a 20–39 % reduction N<sub>2</sub>O emission per unit of production in intercropped systems. The primary reduction in emissions occurred 7–10 days after the second fertilization, accounting for over half of the total emission reduction. Spatial analysis revealed that the majority of the reduction originated from the maize and interaction rows. Soil nitrate (NO<sub>3</sub><sup>-</sup>) concentration emerged as the most critical factor influencing N<sub>2</sub>O flux, with NH<sub>4</sub><sup>+</sup> concentration also playing a significant role. Notably, straw incorporation did not increase N<sub>2</sub>O emissions from intercropping systems, while yield tended to increase, albeit not significantly.</div></div><div><h3>Conclusions</h3><div>Maize/legume strip intercropping enhances nitrogen utilization, significantly mitigates N<sub>2</sub>O emissions, and boosts crop productivity; however, these effects remain consistent regardless of straw incorporation practices.</div></div><div><h3>Significance</h3><div>This study highlights the advantages of maize/legume strip intercropping systems in reducing N<sub>2</sub>O emissions and its potential contribution to crop production.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"326 ","pages":"Article 109850"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429025001157","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Context

Maize/legume intercropping presents a sustainable agricultural strategy to enhance nitrogen use efficiency and mitigate environmental impacts.

Research question

The impact of maize/legume strip intercropping on N2O emissions, crop yields, and the associated mechanisms are not yet fully understood, particularly in the context of straw incorporation practices.

Methods

A two-year field experiment comparing five cropping systems (maize/peanut strip intercropping, maize/soybean strip intercropping, and corresponding monocropping) either with or without straw incorporation.

Results

Maize/legume strip intercropping increased yields by 15–24 % and reduced N2O emissions by 15–22 % compared to the expected intercropping. This increase in yields, combined with the reduction in N2O emissions, led to a 20–39 % reduction N2O emission per unit of production in intercropped systems. The primary reduction in emissions occurred 7–10 days after the second fertilization, accounting for over half of the total emission reduction. Spatial analysis revealed that the majority of the reduction originated from the maize and interaction rows. Soil nitrate (NO3-) concentration emerged as the most critical factor influencing N2O flux, with NH4+ concentration also playing a significant role. Notably, straw incorporation did not increase N2O emissions from intercropping systems, while yield tended to increase, albeit not significantly.

Conclusions

Maize/legume strip intercropping enhances nitrogen utilization, significantly mitigates N2O emissions, and boosts crop productivity; however, these effects remain consistent regardless of straw incorporation practices.

Significance

This study highlights the advantages of maize/legume strip intercropping systems in reducing N2O emissions and its potential contribution to crop production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Field Crops Research
Field Crops Research 农林科学-农艺学
CiteScore
9.60
自引率
12.10%
发文量
307
审稿时长
46 days
期刊介绍: Field Crops Research is an international journal publishing scientific articles on: √ experimental and modelling research at field, farm and landscape levels on temperate and tropical crops and cropping systems, with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.
期刊最新文献
Nitrogen and organic matter managements improve rice yield and affect greenhouse gas emissions in China’s rice-wheat system Regulation of subsurface drip fertigation on nitrogen cycling soil microorganisms and N2O and NH3 emissions from aeolian sandy soil in alfalfa field in temperate arid regions How do integrated agronomic practices enhance sunflower productivity and stability in saline-alkali soils of arid regions? Evidence from China Temporal and spatial patterns of N2O emissions in maize/legume strip intercropping: Effects of straw incorporation and crop interactions Engineered silicate-solubilizing bacterial community alleviates nutrient stress in field-grown maize by enhancing silicon uptake and optimizing rhizosphere microecology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1