Engineered silicate-solubilizing bacterial community alleviates nutrient stress in field-grown maize by enhancing silicon uptake and optimizing rhizosphere microecology
Chao Wang , Chengkai Zhang , Zhihong Xie , Dandan Wang , Yue Meng , Yajie Sun , Yinglong Chen , Zhaoyu Li , Yaowei Kang , Yizhu Guo
{"title":"Engineered silicate-solubilizing bacterial community alleviates nutrient stress in field-grown maize by enhancing silicon uptake and optimizing rhizosphere microecology","authors":"Chao Wang , Chengkai Zhang , Zhihong Xie , Dandan Wang , Yue Meng , Yajie Sun , Yinglong Chen , Zhaoyu Li , Yaowei Kang , Yizhu Guo","doi":"10.1016/j.fcr.2025.109827","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><div>Silicon (Si), as a functional element, is known to benefit the development and growth of cereals, especially under stress conditions. Si biofortification in crops using silicate-solubilizing bacteria (SSB) offers an eco-friendly biotechnique for enhancing crop resilience.</div></div><div><h3>Objective</h3><div>This study aimed to test the effectiveness of a synthetic community of SSBs (SSB SynCom), isolated from across the country for high silica degradation capacity, in supporting competitive maize yields with reduced fertilizer application.</div></div><div><h3>Methods</h3><div>A two-year field experiment was conducted to compare the effect of SSB SynCom on maize growth, yield and rhizosphere microecology with reduced fertilizer application.</div></div><div><h3>Results</h3><div>The application of SSB SynCom significantly increased biomass and yield in maize under nutritional stress, particularly nitrogen (N) deficiency. Leaf photosynthetic capacity, Si concentration, and the expression levels of Si transporter genes were notably enhanced with SSB SynCom, along with significant changes in rhizosphere microecology. Notably, N and Si concentration in the shoots were strongly correlated. Additionally, several key microbial genera showed significant positive associations with the nutritional status of the host plant.</div></div><div><h3>Conclusion</h3><div>The investigated SSB SynCom proved to be a highly effective microbial agent for improving yield via N-Si interactions in field-grown maize with reduced fertilizer input, offering new avenues for sustainable agricultural development.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"326 ","pages":"Article 109827"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429025000929","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Silicon (Si), as a functional element, is known to benefit the development and growth of cereals, especially under stress conditions. Si biofortification in crops using silicate-solubilizing bacteria (SSB) offers an eco-friendly biotechnique for enhancing crop resilience.
Objective
This study aimed to test the effectiveness of a synthetic community of SSBs (SSB SynCom), isolated from across the country for high silica degradation capacity, in supporting competitive maize yields with reduced fertilizer application.
Methods
A two-year field experiment was conducted to compare the effect of SSB SynCom on maize growth, yield and rhizosphere microecology with reduced fertilizer application.
Results
The application of SSB SynCom significantly increased biomass and yield in maize under nutritional stress, particularly nitrogen (N) deficiency. Leaf photosynthetic capacity, Si concentration, and the expression levels of Si transporter genes were notably enhanced with SSB SynCom, along with significant changes in rhizosphere microecology. Notably, N and Si concentration in the shoots were strongly correlated. Additionally, several key microbial genera showed significant positive associations with the nutritional status of the host plant.
Conclusion
The investigated SSB SynCom proved to be a highly effective microbial agent for improving yield via N-Si interactions in field-grown maize with reduced fertilizer input, offering new avenues for sustainable agricultural development.
期刊介绍:
Field Crops Research is an international journal publishing scientific articles on:
√ experimental and modelling research at field, farm and landscape levels
on temperate and tropical crops and cropping systems,
with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.