Functional differentiation of the default and frontoparietal control networks predicts individual differences in creative achievement: evidence from macroscale cortical gradients.
{"title":"Functional differentiation of the default and frontoparietal control networks predicts individual differences in creative achievement: evidence from macroscale cortical gradients.","authors":"Tyler A Sassenberg, Rex E Jung, Colin G DeYoung","doi":"10.1093/cercor/bhaf046","DOIUrl":null,"url":null,"abstract":"<p><p>Much of the research on the neural correlates of creativity has emphasized creative cognition, and growing evidence suggests that creativity is related to functional properties of the default and frontoparietal control networks. The present work expands on this body of evidence by testing associations of creative achievement with connectivity profiles of brain networks assessed using macroscale cortical gradients. Using resting-state connectivity functional magnetic resonance imaging in 2 community samples (N's = 236 and 234), we found evidence that creative achievement is positively associated with greater functional dissimilarity between core regions of the default and frontoparietal control networks. These results suggest that creative achievement is supported by the ability of these 2 networks to carry out distinct cognitive roles. This research provides further evidence, using a cortical gradient approach, that individual differences in creative achievement can be predicted from functional properties of brain networks involved in higher-order cognition, and it aligns with past research on the functional connectivity correlates of creative task performance.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf046","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Much of the research on the neural correlates of creativity has emphasized creative cognition, and growing evidence suggests that creativity is related to functional properties of the default and frontoparietal control networks. The present work expands on this body of evidence by testing associations of creative achievement with connectivity profiles of brain networks assessed using macroscale cortical gradients. Using resting-state connectivity functional magnetic resonance imaging in 2 community samples (N's = 236 and 234), we found evidence that creative achievement is positively associated with greater functional dissimilarity between core regions of the default and frontoparietal control networks. These results suggest that creative achievement is supported by the ability of these 2 networks to carry out distinct cognitive roles. This research provides further evidence, using a cortical gradient approach, that individual differences in creative achievement can be predicted from functional properties of brain networks involved in higher-order cognition, and it aligns with past research on the functional connectivity correlates of creative task performance.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.