Perception of short, but not long, time intervals is modality specific: EEG evidence using vibrotactile stimuli.

IF 2.9 2区 医学 Q2 NEUROSCIENCES Cerebral cortex Pub Date : 2025-03-06 DOI:10.1093/cercor/bhaf051
Nicola Thibault, Andréanne Sharp, Philippe Albouy, Simon Grondin
{"title":"Perception of short, but not long, time intervals is modality specific: EEG evidence using vibrotactile stimuli.","authors":"Nicola Thibault, Andréanne Sharp, Philippe Albouy, Simon Grondin","doi":"10.1093/cercor/bhaf051","DOIUrl":null,"url":null,"abstract":"<p><p>A longstanding debate in cognitive neuroscience questions whether temporal processing is modality-specific or governed by a \"central clock\" mechanism. We propose that this debate stems from neglecting the duration of the intervals processed, as studies supporting modality-specific models of time perception often focus on below 1.2-s intervals. To address this, we examined the neuronal dynamics underlying the perception of time intervals shorter and longer than 1.2-s using vibrotactile stimuli. Twenty participants underwent electroencephalogram recordings during a passive tactile oddball paradigm. We compared brain responses to standard and deviant intervals, with deviants occurring either earlier or later than the standard in both below and above 1.2-s conditions. Event-related potentials revealed distinct deviance-related components: a P250 for deviance detection of short deviants and an N400 long deviants. Generators lied in a modality-specific network for short intervals, while long intervals activated a broader, higher-level network. We found no evidence of the contingent negative variation in the tactile modality, questioning its role as a universal marker of temporal accumulation. Our findings suggest that short intervals involve modality-specific circuits, while longer intervals engage distributed networks, shedding light on whether temporal processing is centralized or distributed.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf051","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A longstanding debate in cognitive neuroscience questions whether temporal processing is modality-specific or governed by a "central clock" mechanism. We propose that this debate stems from neglecting the duration of the intervals processed, as studies supporting modality-specific models of time perception often focus on below 1.2-s intervals. To address this, we examined the neuronal dynamics underlying the perception of time intervals shorter and longer than 1.2-s using vibrotactile stimuli. Twenty participants underwent electroencephalogram recordings during a passive tactile oddball paradigm. We compared brain responses to standard and deviant intervals, with deviants occurring either earlier or later than the standard in both below and above 1.2-s conditions. Event-related potentials revealed distinct deviance-related components: a P250 for deviance detection of short deviants and an N400 long deviants. Generators lied in a modality-specific network for short intervals, while long intervals activated a broader, higher-level network. We found no evidence of the contingent negative variation in the tactile modality, questioning its role as a universal marker of temporal accumulation. Our findings suggest that short intervals involve modality-specific circuits, while longer intervals engage distributed networks, shedding light on whether temporal processing is centralized or distributed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
期刊最新文献
Functional differentiation of the default and frontoparietal control networks predicts individual differences in creative achievement: evidence from macroscale cortical gradients. Perception of short, but not long, time intervals is modality specific: EEG evidence using vibrotactile stimuli. Structural pathways related to the subventricular zone are decreased in volume with altered microstructure in young adult males with autism spectrum disorder. Neural correlates of the sense of agency in free and coerced moral decision-making among civilians and military personnel. Are resting-state network alterations in late-life depression related to synaptic density? Findings of a combined 11C-UCB-J PET and fMRI study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1