SKA3 promotes lung adenocarcinoma progression via the EGFR/E2F1/SKA3/integrin β1 signaling loop.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY Molecular and Cellular Biochemistry Pub Date : 2025-03-08 DOI:10.1007/s11010-025-05242-x
Xiufen Zheng, Zedong Sun, Shi Wang, Qibing Liu, Biqing Zhu, Zhijian Ren, Dingwei Fan, Chunping Zhang, Xinyin Fu, Yan Jin, Jing Luo, Jie Wang, Binhui Ren
{"title":"SKA3 promotes lung adenocarcinoma progression via the EGFR/E2F1/SKA3/integrin β1 signaling loop.","authors":"Xiufen Zheng, Zedong Sun, Shi Wang, Qibing Liu, Biqing Zhu, Zhijian Ren, Dingwei Fan, Chunping Zhang, Xinyin Fu, Yan Jin, Jing Luo, Jie Wang, Binhui Ren","doi":"10.1007/s11010-025-05242-x","DOIUrl":null,"url":null,"abstract":"<p><p>Spindle and kinetochore-associated complex subunit 3 (SKA3) contributes to tumor growth and metastasis, but its specific roles have not been clearly elucidated. In this study, we found that SKA3 contributed to lung adenocarcinoma (LUAD) progression by interacting with integrin β1. The expression characteristics of SKA3 in LUAD patients were analyzed by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets and validated in 33 paired LUAD tissues by immunohistochemistry. Our data confirmed that SKA3 was a crucial regulator of LUAD progression and was associated with worse patient survival. In vitro and in vivo studies showed that SKA3 increased cell migration and invasion. Mechanistically, it was demonstrated that SKA3 could bind to integrin β1 and promote its activation, which further promoted the activation of EGFR. As a positive feedback loop, the activation of EGFR in turn promoted the expression of SKA3 via E2F1-mediated transcriptional regulation. Inhibition of EGFR with AZD9291 blocked SKA3 signaling induced by E2F1. These results indicated that SKA3 was crucial for the activation of EGFR and its downstream signaling pathway. Our findings uncovered the oncogenic role of SKA3 in LUAD progression and elucidated a novel EGFR/E2F1/SKA3/integrin β1 signaling loop, providing a potential SKA3-directed therapeutic strategy for LUAD patients.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05242-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spindle and kinetochore-associated complex subunit 3 (SKA3) contributes to tumor growth and metastasis, but its specific roles have not been clearly elucidated. In this study, we found that SKA3 contributed to lung adenocarcinoma (LUAD) progression by interacting with integrin β1. The expression characteristics of SKA3 in LUAD patients were analyzed by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets and validated in 33 paired LUAD tissues by immunohistochemistry. Our data confirmed that SKA3 was a crucial regulator of LUAD progression and was associated with worse patient survival. In vitro and in vivo studies showed that SKA3 increased cell migration and invasion. Mechanistically, it was demonstrated that SKA3 could bind to integrin β1 and promote its activation, which further promoted the activation of EGFR. As a positive feedback loop, the activation of EGFR in turn promoted the expression of SKA3 via E2F1-mediated transcriptional regulation. Inhibition of EGFR with AZD9291 blocked SKA3 signaling induced by E2F1. These results indicated that SKA3 was crucial for the activation of EGFR and its downstream signaling pathway. Our findings uncovered the oncogenic role of SKA3 in LUAD progression and elucidated a novel EGFR/E2F1/SKA3/integrin β1 signaling loop, providing a potential SKA3-directed therapeutic strategy for LUAD patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
期刊最新文献
SKA3 promotes lung adenocarcinoma progression via the EGFR/E2F1/SKA3/integrin β1 signaling loop. Exploring the potential link between human papillomavirus infection and coronary artery disease: a review of shared pathways and mechanisms. Macrophage polarization-related gene SOAT1 is involved in inflammatory response and functional recovery after spinal cord injury. Chloride channels and mast cell function: pioneering new frontiers in IBD therapy. MiR-3202-DTL signaling axis impedes NSCLC malignancy via regulating the ubiquitination-proteasome degradation of p21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1