Modelling route choice in public transport with deep learning

IF 3.5 2区 工程技术 Q1 ENGINEERING, CIVIL Transportation Pub Date : 2025-03-10 DOI:10.1007/s11116-025-10597-7
Alessio Daniele Marra, Francesco Corman
{"title":"Modelling route choice in public transport with deep learning","authors":"Alessio Daniele Marra, Francesco Corman","doi":"10.1007/s11116-025-10597-7","DOIUrl":null,"url":null,"abstract":"<p>For choice problems in transportation, machine learning and deep learning are alternative methods to traditional choice models. While several works explored the potential of this technology for modelling mode choice, lower attention is given to route choice, especially in public transport. In this work, we propose a deep learning model designed specifically for route choice in public transport. The model can estimate a nonlinear utility function, allowing complex interactions among the variables; it can easily include non-alternative specific variables, such as weather or socio-demographic information. Moreover, compared to the traditional choice models, it numerically outperforms the Path Size Logit Model in prediction performance, and does not require pre-specification of the model by an experienced human modeler. These properties are particularly useful for route choice analyses, to capture possible heterogeneities or complex behavior, which are difficult to model a priori. We evaluated the interpretability of the model observing the marginal rates of substitution and applying Accumulated Local Effects, showing meaningful effects of the variables on the probability to choose an alternative. We tested the proposed model on a large-scale dataset based on GPS tracking. We considered both synthetic choices, to demonstrate the model properties, and real choices, to evaluate the model in practice. The results showed moderately better performance of the deep learning model compared to the Path Size Logit, confirming the possibility of using it for modeling and predicting route choice.</p>","PeriodicalId":49419,"journal":{"name":"Transportation","volume":"25 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11116-025-10597-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

For choice problems in transportation, machine learning and deep learning are alternative methods to traditional choice models. While several works explored the potential of this technology for modelling mode choice, lower attention is given to route choice, especially in public transport. In this work, we propose a deep learning model designed specifically for route choice in public transport. The model can estimate a nonlinear utility function, allowing complex interactions among the variables; it can easily include non-alternative specific variables, such as weather or socio-demographic information. Moreover, compared to the traditional choice models, it numerically outperforms the Path Size Logit Model in prediction performance, and does not require pre-specification of the model by an experienced human modeler. These properties are particularly useful for route choice analyses, to capture possible heterogeneities or complex behavior, which are difficult to model a priori. We evaluated the interpretability of the model observing the marginal rates of substitution and applying Accumulated Local Effects, showing meaningful effects of the variables on the probability to choose an alternative. We tested the proposed model on a large-scale dataset based on GPS tracking. We considered both synthetic choices, to demonstrate the model properties, and real choices, to evaluate the model in practice. The results showed moderately better performance of the deep learning model compared to the Path Size Logit, confirming the possibility of using it for modeling and predicting route choice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportation
Transportation 工程技术-工程:土木
CiteScore
10.70
自引率
4.70%
发文量
94
审稿时长
6-12 weeks
期刊介绍: In our first issue, published in 1972, we explained that this Journal is intended to promote the free and vigorous exchange of ideas and experience among the worldwide community actively concerned with transportation policy, planning and practice. That continues to be our mission, with a clear focus on topics concerned with research and practice in transportation policy and planning, around the world. These four words, policy and planning, research and practice are our key words. While we have a particular focus on transportation policy analysis and travel behaviour in the context of ground transportation, we willingly consider all good quality papers that are highly relevant to transportation policy, planning and practice with a clear focus on innovation, on extending the international pool of knowledge and understanding. Our interest is not only with transportation policies - and systems and services – but also with their social, economic and environmental impacts, However, papers about the application of established procedures to, or the development of plans or policies for, specific locations are unlikely to prove acceptable unless they report experience which will be of real benefit those working elsewhere. Papers concerned with the engineering, safety and operational management of transportation systems are outside our scope.
期刊最新文献
Modelling route choice in public transport with deep learning Travel contexts for different forms of multimodality in the new urban mobility landscape: a latent class analysis A tour-based SP-off-RP survey for combined time period and mode choice Identification and investigation of cruising speeds from cycling GPS data Beyond metros: pollution mitigation and environmental benefits in diverse transit systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1