Bioluminescence Readout Lateral Flow Immunoassay Using Nanobody Targeting Aflatoxin B1

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2025-03-10 DOI:10.1039/d5an00030k
Shun Takahashi, Yuki Hiruta, Daniel Citterio
{"title":"Bioluminescence Readout Lateral Flow Immunoassay Using Nanobody Targeting Aflatoxin B1","authors":"Shun Takahashi, Yuki Hiruta, Daniel Citterio","doi":"10.1039/d5an00030k","DOIUrl":null,"url":null,"abstract":"Multiple signal detection methods are known for lateral flow immunoassays (LFIAs), with colorimetric approaches dominating the field. However, their limited sensitivity is a remaining challenge. Fluorescence-based signaling is regarded as a more sensitive method, but it comes at the cost of partial sacrifice of the user-friendliness of LFIAs due to the requirement of an excitation light source. In this context, bioluminescence providing an inherently high signal to noise ratio without the need of excitation light could be an attractive alternative. But only a few studies have demonstrated the application of bioluminescence signaling in LFIAs. This work aimed at the development of a simple bioluminescence-based LFIA for the detection of aflatoxin B1 (AFB1), used as a model target in a competitive LFIA format. Signal transduction was achieved by nanobody-nanoluciferase (Nluc) fusion proteins. These small-sized recombinant heavy-chain-only antibodies derived from the camelidae family directly linked with the Nluc enzyme produce high intensity glow-type bioluminescence in combination with the furimazine substrate. LFIA devices consisting of sample pad, nitrocellulose membrane and absorbent pad with AFB1-BSA conjugate deposited at the test line on the nitrocellulose membrane, achieved an LOD of 0.26 ng/mL for aqueous AFB1 solutions pre-mixed with Nanobody-Nluc and bioluminescence emission observed on an imaging system. More user-friendly LFIA devices with integrated conjugate pad and pre-deposited Nanobody-Nluc provided clear AFB1 concentration-dependent bioluminescence signals with low background and enabled readout with a standard digital camera, resulting in an LOD of 1.12 ng/mL. Finally, the LFIA strips have been applied in AFB1-spiked oats milk samples. The LOD of 4.09 ng/mL achieved in the real sample matrix is well below the maximum allowable residual concentration of AFB1 in the U.S. (20 ng/mL).","PeriodicalId":63,"journal":{"name":"Analyst","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5an00030k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple signal detection methods are known for lateral flow immunoassays (LFIAs), with colorimetric approaches dominating the field. However, their limited sensitivity is a remaining challenge. Fluorescence-based signaling is regarded as a more sensitive method, but it comes at the cost of partial sacrifice of the user-friendliness of LFIAs due to the requirement of an excitation light source. In this context, bioluminescence providing an inherently high signal to noise ratio without the need of excitation light could be an attractive alternative. But only a few studies have demonstrated the application of bioluminescence signaling in LFIAs. This work aimed at the development of a simple bioluminescence-based LFIA for the detection of aflatoxin B1 (AFB1), used as a model target in a competitive LFIA format. Signal transduction was achieved by nanobody-nanoluciferase (Nluc) fusion proteins. These small-sized recombinant heavy-chain-only antibodies derived from the camelidae family directly linked with the Nluc enzyme produce high intensity glow-type bioluminescence in combination with the furimazine substrate. LFIA devices consisting of sample pad, nitrocellulose membrane and absorbent pad with AFB1-BSA conjugate deposited at the test line on the nitrocellulose membrane, achieved an LOD of 0.26 ng/mL for aqueous AFB1 solutions pre-mixed with Nanobody-Nluc and bioluminescence emission observed on an imaging system. More user-friendly LFIA devices with integrated conjugate pad and pre-deposited Nanobody-Nluc provided clear AFB1 concentration-dependent bioluminescence signals with low background and enabled readout with a standard digital camera, resulting in an LOD of 1.12 ng/mL. Finally, the LFIA strips have been applied in AFB1-spiked oats milk samples. The LOD of 4.09 ng/mL achieved in the real sample matrix is well below the maximum allowable residual concentration of AFB1 in the U.S. (20 ng/mL).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
期刊最新文献
Back cover Rapid and reliable POCT blood typing based on laser identified RBC agglutination method A dual-trigger entropy drive circuit based on competitive hybridization for high-specific enzyme-free detection of single nucleotide polymorphisms Curcumin – A natural colorant-based colorimetric pH indicator for molecular diagnostics Ultrasensitive Detection of Carcinogenic Chromium (VI) Species Below the WHO Limit Using a LaCeO₃/Carbon Black Screen Printed Electrode in Batch Injection Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1