A dual-trigger entropy drive circuit based on competitive hybridization for high-specific enzyme-free detection of single nucleotide polymorphisms

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2025-03-11 DOI:10.1039/d5an00011d
Sisi Bu, Fang Yang, Tuo Huang, Qianglong Tan, Siyu Yu, Shufen Xiao, Ye Hu, Wenlin Xie, Zhihua Zhou, Yulan Tian, Jian Chen
{"title":"A dual-trigger entropy drive circuit based on competitive hybridization for high-specific enzyme-free detection of single nucleotide polymorphisms","authors":"Sisi Bu, Fang Yang, Tuo Huang, Qianglong Tan, Siyu Yu, Shufen Xiao, Ye Hu, Wenlin Xie, Zhihua Zhou, Yulan Tian, Jian Chen","doi":"10.1039/d5an00011d","DOIUrl":null,"url":null,"abstract":"Single nucleotide polymorphisms (SNPs) play a pivotal role in the detection of major diseases and the breeding of molecular designs. However, current SNP detection methods often rely heavily on expensive proteases, or alternatively, enzyme-free detection methods grapple with limited specificity. Addressing this issue, our study presents an enzyme-free, highly specific, simple, and efficient detection platform. First, we introduced additional base mismatches into the traditional entropy-driven circuit (EDC) reaction to establish a foundational distinction between mutant (MT) and wild-type (WT) sequences. On this basis, we introduced the concept of competitive hybridization and developed a dual-trigger EDC reaction (DEDC) platform, which responded to both wild-type target (WT) and mutant target (MT). By strategically leveraging the signals from both WT and MT, we constructed a ratiometric signal output mode, substantially enhancing the discrimination factor between WT and MT and maximizing the specificity of the detection system. Within the DEDC reaction system, the driving force solely consists of the increase in the system's entropy, with no enzymes involved throughout the entire process, thereby achieving simple and efficient specific detection of SNPs. Notably, MT, previously considered an interference in assays, is repurposed as a trigger signal, making DEDC particularly suitable for the identification of heterozygous samples with low mutational abundances. By analyzing the performance of this platform and using it for genotyping detection of soybean real genome samples, the practical application potential of the CTMSD platform was verified. The CTMSD platform based on EDC reactions has the potential to become a universal biosensing paradigm for future biochemical applications.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"22 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5an00011d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single nucleotide polymorphisms (SNPs) play a pivotal role in the detection of major diseases and the breeding of molecular designs. However, current SNP detection methods often rely heavily on expensive proteases, or alternatively, enzyme-free detection methods grapple with limited specificity. Addressing this issue, our study presents an enzyme-free, highly specific, simple, and efficient detection platform. First, we introduced additional base mismatches into the traditional entropy-driven circuit (EDC) reaction to establish a foundational distinction between mutant (MT) and wild-type (WT) sequences. On this basis, we introduced the concept of competitive hybridization and developed a dual-trigger EDC reaction (DEDC) platform, which responded to both wild-type target (WT) and mutant target (MT). By strategically leveraging the signals from both WT and MT, we constructed a ratiometric signal output mode, substantially enhancing the discrimination factor between WT and MT and maximizing the specificity of the detection system. Within the DEDC reaction system, the driving force solely consists of the increase in the system's entropy, with no enzymes involved throughout the entire process, thereby achieving simple and efficient specific detection of SNPs. Notably, MT, previously considered an interference in assays, is repurposed as a trigger signal, making DEDC particularly suitable for the identification of heterozygous samples with low mutational abundances. By analyzing the performance of this platform and using it for genotyping detection of soybean real genome samples, the practical application potential of the CTMSD platform was verified. The CTMSD platform based on EDC reactions has the potential to become a universal biosensing paradigm for future biochemical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
期刊最新文献
Back cover Rapid and reliable POCT blood typing based on laser identified RBC agglutination method A dual-trigger entropy drive circuit based on competitive hybridization for high-specific enzyme-free detection of single nucleotide polymorphisms Curcumin – A natural colorant-based colorimetric pH indicator for molecular diagnostics Ultrasensitive Detection of Carcinogenic Chromium (VI) Species Below the WHO Limit Using a LaCeO₃/Carbon Black Screen Printed Electrode in Batch Injection Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1