Solid waste based manufactured soil – Stabilization of “organics-microorganisms-inorganic skeleton” and performance evaluation

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Waste management Pub Date : 2025-03-11 DOI:10.1016/j.wasman.2025.114738
Jun Chen , Qingyi Li , Jianbo Zhang , Hao Zhou , Siwei Peng , Shufeng Qiao , Hang He , Kewei Li , Dongsheng Wang , Weijun Zhang
{"title":"Solid waste based manufactured soil – Stabilization of “organics-microorganisms-inorganic skeleton” and performance evaluation","authors":"Jun Chen ,&nbsp;Qingyi Li ,&nbsp;Jianbo Zhang ,&nbsp;Hao Zhou ,&nbsp;Siwei Peng ,&nbsp;Shufeng Qiao ,&nbsp;Hang He ,&nbsp;Kewei Li ,&nbsp;Dongsheng Wang ,&nbsp;Weijun Zhang","doi":"10.1016/j.wasman.2025.114738","DOIUrl":null,"url":null,"abstract":"<div><div>The safe disposal and utilization of bulk solid waste (SW) are critical challenges. Manufactured soil, a soil-like material composed of SW, offers a novel solution for resource recycling. However, the mechanisms underlying SW-based manufactured soil fertility development remain unclear. This study systematically investigated the performance of SW-based manufactured soil using aerobic compost sludge (ACS-soil) and anaerobic digestion sludge (ADS-soil), focusing on the microbial mechanism which driving manufactured soil fertility development. Results showed that the soil nutrient index (SNI) of SW-based manufactured soil was 5 to 8 times higher than that of natural topsoil. These soils significantly promoted wheatgrass growth. However, ACS-soil exhibited superior fertility and plant performance, maintaining stable nutrient levels, whereas the SNI value and soil pH of ADS-soil decreased by 27.13% and 17.68% respectively. Microbial community analysis revealed that homogeneous selection in ACS-soil drove microbial community succession, maintaining stable nutrition content and increasing humification degree. In ADS-soil, the rich in labile compounds (accounting for 41%) led to lower environmental stress, stochastic processes dominated bacterial succession, which driving declined pH and thus negatively impact the soil fertility. Furthermore, based on life cycle analysis results, using SW to prepare manufactured soils had lower carbon emissions than conventional disposal methods (including safe landfill, incineration and direct land use), which demonstrated that SW-based manufactured soil is a promising method for SW disposal. This research underscores the potential of SW-based manufactured soil for waste disposal and enhanced plant growth, emphasizing the importance of selecting appropriate organic components to optimize soil performance.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"200 ","pages":"Article 114738"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25001370","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The safe disposal and utilization of bulk solid waste (SW) are critical challenges. Manufactured soil, a soil-like material composed of SW, offers a novel solution for resource recycling. However, the mechanisms underlying SW-based manufactured soil fertility development remain unclear. This study systematically investigated the performance of SW-based manufactured soil using aerobic compost sludge (ACS-soil) and anaerobic digestion sludge (ADS-soil), focusing on the microbial mechanism which driving manufactured soil fertility development. Results showed that the soil nutrient index (SNI) of SW-based manufactured soil was 5 to 8 times higher than that of natural topsoil. These soils significantly promoted wheatgrass growth. However, ACS-soil exhibited superior fertility and plant performance, maintaining stable nutrient levels, whereas the SNI value and soil pH of ADS-soil decreased by 27.13% and 17.68% respectively. Microbial community analysis revealed that homogeneous selection in ACS-soil drove microbial community succession, maintaining stable nutrition content and increasing humification degree. In ADS-soil, the rich in labile compounds (accounting for 41%) led to lower environmental stress, stochastic processes dominated bacterial succession, which driving declined pH and thus negatively impact the soil fertility. Furthermore, based on life cycle analysis results, using SW to prepare manufactured soils had lower carbon emissions than conventional disposal methods (including safe landfill, incineration and direct land use), which demonstrated that SW-based manufactured soil is a promising method for SW disposal. This research underscores the potential of SW-based manufactured soil for waste disposal and enhanced plant growth, emphasizing the importance of selecting appropriate organic components to optimize soil performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
期刊最新文献
Transforming urban waste collection inventory: AI-Based container classification and Re-Identification Chelation treatment for heavy metals in municipal solid waste incineration fly ash: 300-Day study on stability and environmental risk Solid waste based manufactured soil – Stabilization of “organics-microorganisms-inorganic skeleton” and performance evaluation Editorial Board Sustainable use of fly ash waste in tire tread rubber: Characterization of physical properties and environmental impact assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1