Transforming urban waste collection inventory: AI-Based container classification and Re-Identification

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Waste management Pub Date : 2025-03-12 DOI:10.1016/j.wasman.2025.02.051
Javier Galán, Miguel González, Paula Moral, Álvaro García-Martín, José M. Martínez
{"title":"Transforming urban waste collection inventory: AI-Based container classification and Re-Identification","authors":"Javier Galán,&nbsp;Miguel González,&nbsp;Paula Moral,&nbsp;Álvaro García-Martín,&nbsp;José M. Martínez","doi":"10.1016/j.wasman.2025.02.051","DOIUrl":null,"url":null,"abstract":"<div><div>This work lays the groundwork for creating an automated system for the inventory of urban waste elements. Our primary contribution is the development of, to the best of our knowledge, the first re-identification system for urban waste elements that uses Artificial Intelligence and Computer Vision, incorporating information from a classification module and geolocation context to enhance post-processing performance. This re-identification system helps to create and update inventories by determining if a new image matches an existing element in the inventory based on visual similarity or, if not, by adding it as a new identity (new class or new identity of an existing class). Such a system could be highly valuable to local authorities and waste management companies, offering improved facility maintenance, geolocation, and additional applications. This work also addresses the dynamic nature of urban environments and waste management elements by exploring Continual Learning strategies to adapt pretrained systems to new settings with different urban elements. Experimental results show that the proposed system operates effectively across various container types and city layouts. These findings were validated through testing in two different Spanish locations, a “City” and a “Campus”, differing in size, illumination conditions, seasons, urban design and container appearance. For the final re-identification system, the baseline system achieves 53.18 mAP (mean Average Precision) in the simple scenario, compared to 21.54 mAP in the complex scenario, with additional challenging unseen variability. Incorporating the proposed post-processing techniques significantly improved results, reaching 74.14 mAP and 71.75 mAP in the simple and complex scenario respectively.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"199 ","pages":"Pages 25-35"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25001266","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work lays the groundwork for creating an automated system for the inventory of urban waste elements. Our primary contribution is the development of, to the best of our knowledge, the first re-identification system for urban waste elements that uses Artificial Intelligence and Computer Vision, incorporating information from a classification module and geolocation context to enhance post-processing performance. This re-identification system helps to create and update inventories by determining if a new image matches an existing element in the inventory based on visual similarity or, if not, by adding it as a new identity (new class or new identity of an existing class). Such a system could be highly valuable to local authorities and waste management companies, offering improved facility maintenance, geolocation, and additional applications. This work also addresses the dynamic nature of urban environments and waste management elements by exploring Continual Learning strategies to adapt pretrained systems to new settings with different urban elements. Experimental results show that the proposed system operates effectively across various container types and city layouts. These findings were validated through testing in two different Spanish locations, a “City” and a “Campus”, differing in size, illumination conditions, seasons, urban design and container appearance. For the final re-identification system, the baseline system achieves 53.18 mAP (mean Average Precision) in the simple scenario, compared to 21.54 mAP in the complex scenario, with additional challenging unseen variability. Incorporating the proposed post-processing techniques significantly improved results, reaching 74.14 mAP and 71.75 mAP in the simple and complex scenario respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
期刊最新文献
Transforming urban waste collection inventory: AI-Based container classification and Re-Identification Chelation treatment for heavy metals in municipal solid waste incineration fly ash: 300-Day study on stability and environmental risk Solid waste based manufactured soil – Stabilization of “organics-microorganisms-inorganic skeleton” and performance evaluation Editorial Board Sustainable use of fly ash waste in tire tread rubber: Characterization of physical properties and environmental impact assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1