Caroline Hallin , Anna Adell , Björn Almström , Aart Kroon , Magnus Larson
{"title":"RoadRAT – A new framework to assess the probability of inundation, wave runup, and erosion impacting coastal roads","authors":"Caroline Hallin , Anna Adell , Björn Almström , Aart Kroon , Magnus Larson","doi":"10.1016/j.coastaleng.2025.104741","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a new framework – RoadRAT - to calculate the probability of inundation, wave runup, and storm erosion impacting coastal roads. Extreme value analysis is applied to annual maxima of observed and simulated still water level levels (SWL), total water levels (SWL + runup), and storm erosion volumes. The probability of impact on the road is derived both for the present conditions and for future conditions considering long-term evolution of the coastline in response to sea level rise and projected continuation of historical trends. RoadRAT is intended for screening at a regional scale (>100 km) to identify vulnerable road segments that need further attention. A case study was conducted on the south coast of Sweden to demonstrate the framework. The results indicate that the main coastal road has a low probability of impact under present conditions, but that it will increase in the future under changing climatic conditions. In 2150, which is the target year for the analysis, several kilometres of the road will be lost to erosion, and flooding and runup will frequently impact parts of the remaining road. In future applications, RoadRAT could be coupled with models that describe the consequences of inundation, wave runup, and storm erosion for road serviceability and transport.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"199 ","pages":"Article 104741"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383925000468","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a new framework – RoadRAT - to calculate the probability of inundation, wave runup, and storm erosion impacting coastal roads. Extreme value analysis is applied to annual maxima of observed and simulated still water level levels (SWL), total water levels (SWL + runup), and storm erosion volumes. The probability of impact on the road is derived both for the present conditions and for future conditions considering long-term evolution of the coastline in response to sea level rise and projected continuation of historical trends. RoadRAT is intended for screening at a regional scale (>100 km) to identify vulnerable road segments that need further attention. A case study was conducted on the south coast of Sweden to demonstrate the framework. The results indicate that the main coastal road has a low probability of impact under present conditions, but that it will increase in the future under changing climatic conditions. In 2150, which is the target year for the analysis, several kilometres of the road will be lost to erosion, and flooding and runup will frequently impact parts of the remaining road. In future applications, RoadRAT could be coupled with models that describe the consequences of inundation, wave runup, and storm erosion for road serviceability and transport.
期刊介绍:
Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.