{"title":"Linear Model for Concentration Measurement of Mixed Gases","authors":"Peiwen Wu, Xingchang Qiu, Yuanming Wu, Zaihua Duan, Yilun Ma, Haichao Yu, Zhen Yuan, Yadong Jiang, Huiling Tai","doi":"10.1021/acssensors.4c03092","DOIUrl":null,"url":null,"abstract":"Electronic noses have been widely used in industrial production, food preservation, agricultural product storage, environmental monitoring, and other fields. However, due to the cross-sensitivity of gas-sensing responses, accurately measuring the concentration of mixed gases remains challenging. To address this issue, this study attempts to determine the number of state variables that produce the cross-influence based on the experimental data, establish the state space model from the equivalent circuit model, and obtain model parameters through parameter correlation iterative algorithms and a Kalman filter. The sensor response model and the concentration measurement model of mixed gases are established accordingly. The simulation and experimental results show that these two models have high accuracy in predicting the sensor response and measuring the concentrations of mixed gases under the influence of mixed gases on the sensors.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"35 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03092","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic noses have been widely used in industrial production, food preservation, agricultural product storage, environmental monitoring, and other fields. However, due to the cross-sensitivity of gas-sensing responses, accurately measuring the concentration of mixed gases remains challenging. To address this issue, this study attempts to determine the number of state variables that produce the cross-influence based on the experimental data, establish the state space model from the equivalent circuit model, and obtain model parameters through parameter correlation iterative algorithms and a Kalman filter. The sensor response model and the concentration measurement model of mixed gases are established accordingly. The simulation and experimental results show that these two models have high accuracy in predicting the sensor response and measuring the concentrations of mixed gases under the influence of mixed gases on the sensors.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.