Assessing neurocognitive maturation in early adolescence based on baby and adult functional brain landscapes

IF 4.6 2区 医学 Q1 NEUROSCIENCES Developmental Cognitive Neuroscience Pub Date : 2025-03-06 DOI:10.1016/j.dcn.2025.101543
Omid Kardan , Natasha Jones , Muriah D. Wheelock , Mike Angstadt , Cleanthis Michael , M. Fiona Molloy , Jiaxin Cindy Tu , Lora M. Cope , Meghan E. Martz , Katherine L. McCurry , Jillian E. Hardee , Monica D. Rosenberg , Alexander S. Weigard , Luke W. Hyde , Chandra S. Sripada , Mary M. Heitzeg
{"title":"Assessing neurocognitive maturation in early adolescence based on baby and adult functional brain landscapes","authors":"Omid Kardan ,&nbsp;Natasha Jones ,&nbsp;Muriah D. Wheelock ,&nbsp;Mike Angstadt ,&nbsp;Cleanthis Michael ,&nbsp;M. Fiona Molloy ,&nbsp;Jiaxin Cindy Tu ,&nbsp;Lora M. Cope ,&nbsp;Meghan E. Martz ,&nbsp;Katherine L. McCurry ,&nbsp;Jillian E. Hardee ,&nbsp;Monica D. Rosenberg ,&nbsp;Alexander S. Weigard ,&nbsp;Luke W. Hyde ,&nbsp;Chandra S. Sripada ,&nbsp;Mary M. Heitzeg","doi":"10.1016/j.dcn.2025.101543","DOIUrl":null,"url":null,"abstract":"<div><div>Adolescence is a period of growth in cognitive performance and functioning. Recently, data-driven measures of brain-age gap, which can index cognitive decline in older populations, have been utilized in adolescent data with mixed findings. Instead of using a data-driven approach, here we assess the maturation status of the brain functional landscape in early adolescence by directly comparing an individual’s resting-state functional connectivity (rsFC) to the canonical early-life and adulthood communities. Specifically, we hypothesized that the degree to which a youth’s connectome is better captured by adult networks compared to infant/toddler networks is predictive of their cognitive development. To test this hypothesis across individuals and longitudinally, we utilized the Adolescent Brain Cognitive Development (ABCD) Study at baseline (9–10 years; n = 6469) and 2-year-follow-up (Y2: 11–12 years; n = 5060). Adjusted for demographic factors, our anchored rsFC score (AFC) was associated with better task performance both across and within participants. AFC was related to age and aging across youth, and change in AFC statistically mediated the age-related change in task performance. In conclusion, we showed that a model-fitting-free index of the brain at rest that is anchored to both adult and baby connectivity landscapes predicts cognitive performance and development in youth.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"73 ","pages":"Article 101543"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325000386","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Adolescence is a period of growth in cognitive performance and functioning. Recently, data-driven measures of brain-age gap, which can index cognitive decline in older populations, have been utilized in adolescent data with mixed findings. Instead of using a data-driven approach, here we assess the maturation status of the brain functional landscape in early adolescence by directly comparing an individual’s resting-state functional connectivity (rsFC) to the canonical early-life and adulthood communities. Specifically, we hypothesized that the degree to which a youth’s connectome is better captured by adult networks compared to infant/toddler networks is predictive of their cognitive development. To test this hypothesis across individuals and longitudinally, we utilized the Adolescent Brain Cognitive Development (ABCD) Study at baseline (9–10 years; n = 6469) and 2-year-follow-up (Y2: 11–12 years; n = 5060). Adjusted for demographic factors, our anchored rsFC score (AFC) was associated with better task performance both across and within participants. AFC was related to age and aging across youth, and change in AFC statistically mediated the age-related change in task performance. In conclusion, we showed that a model-fitting-free index of the brain at rest that is anchored to both adult and baby connectivity landscapes predicts cognitive performance and development in youth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
10.60%
发文量
124
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.
期刊最新文献
Editorial Board/Aims and Scope Assessing neurocognitive maturation in early adolescence based on baby and adult functional brain landscapes Developmental timing of adversity and neural network organization: An fNIRS study of the impact of refugee displacement White matter microstructure in school-age children with down syndrome Measuring and interpreting individual differences in fetal, infant, and toddler neurodevelopment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1