Omid Kardan , Natasha Jones , Muriah D. Wheelock , Mike Angstadt , Cleanthis Michael , M. Fiona Molloy , Jiaxin Cindy Tu , Lora M. Cope , Meghan E. Martz , Katherine L. McCurry , Jillian E. Hardee , Monica D. Rosenberg , Alexander S. Weigard , Luke W. Hyde , Chandra S. Sripada , Mary M. Heitzeg
{"title":"Assessing neurocognitive maturation in early adolescence based on baby and adult functional brain landscapes","authors":"Omid Kardan , Natasha Jones , Muriah D. Wheelock , Mike Angstadt , Cleanthis Michael , M. Fiona Molloy , Jiaxin Cindy Tu , Lora M. Cope , Meghan E. Martz , Katherine L. McCurry , Jillian E. Hardee , Monica D. Rosenberg , Alexander S. Weigard , Luke W. Hyde , Chandra S. Sripada , Mary M. Heitzeg","doi":"10.1016/j.dcn.2025.101543","DOIUrl":null,"url":null,"abstract":"<div><div>Adolescence is a period of growth in cognitive performance and functioning. Recently, data-driven measures of brain-age gap, which can index cognitive decline in older populations, have been utilized in adolescent data with mixed findings. Instead of using a data-driven approach, here we assess the maturation status of the brain functional landscape in early adolescence by directly comparing an individual’s resting-state functional connectivity (rsFC) to the canonical early-life and adulthood communities. Specifically, we hypothesized that the degree to which a youth’s connectome is better captured by adult networks compared to infant/toddler networks is predictive of their cognitive development. To test this hypothesis across individuals and longitudinally, we utilized the Adolescent Brain Cognitive Development (ABCD) Study at baseline (9–10 years; n = 6469) and 2-year-follow-up (Y2: 11–12 years; n = 5060). Adjusted for demographic factors, our anchored rsFC score (AFC) was associated with better task performance both across and within participants. AFC was related to age and aging across youth, and change in AFC statistically mediated the age-related change in task performance. In conclusion, we showed that a model-fitting-free index of the brain at rest that is anchored to both adult and baby connectivity landscapes predicts cognitive performance and development in youth.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"73 ","pages":"Article 101543"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325000386","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Adolescence is a period of growth in cognitive performance and functioning. Recently, data-driven measures of brain-age gap, which can index cognitive decline in older populations, have been utilized in adolescent data with mixed findings. Instead of using a data-driven approach, here we assess the maturation status of the brain functional landscape in early adolescence by directly comparing an individual’s resting-state functional connectivity (rsFC) to the canonical early-life and adulthood communities. Specifically, we hypothesized that the degree to which a youth’s connectome is better captured by adult networks compared to infant/toddler networks is predictive of their cognitive development. To test this hypothesis across individuals and longitudinally, we utilized the Adolescent Brain Cognitive Development (ABCD) Study at baseline (9–10 years; n = 6469) and 2-year-follow-up (Y2: 11–12 years; n = 5060). Adjusted for demographic factors, our anchored rsFC score (AFC) was associated with better task performance both across and within participants. AFC was related to age and aging across youth, and change in AFC statistically mediated the age-related change in task performance. In conclusion, we showed that a model-fitting-free index of the brain at rest that is anchored to both adult and baby connectivity landscapes predicts cognitive performance and development in youth.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.