High-Impedance Fault Detection in Distribution Networks Based on Support Vector Machine and Wavelet Transform Approach (Case Study: Markazi Province of Iran)

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS Energy Science & Engineering Pub Date : 2025-02-19 DOI:10.1002/ese3.2056
Mohammad Sadegh Attar, Mohammad Reza Miveh
{"title":"High-Impedance Fault Detection in Distribution Networks Based on Support Vector Machine and Wavelet Transform Approach (Case Study: Markazi Province of Iran)","authors":"Mohammad Sadegh Attar,&nbsp;Mohammad Reza Miveh","doi":"10.1002/ese3.2056","DOIUrl":null,"url":null,"abstract":"<p>High impedance faults (HIFs) can lead to crucial damage to the utility grid, such as the risk of fire in material assets, electricity supply interruptions, and long service restoration times. Due to their low current magnitude, conventional protective equipment, such as overcurrent relays, cannot detect these faults. Alternatively, the waveform and variation range of current in HIFs are similar to other phenomena, such as linear and nonlinear load changes and capacitor banks. This paper employs a support vector machine (SVM) classification algorithm that demonstrates reliable accuracy and discrete wavelet transform (DWT) in HIF detection. First, the data set containing measured current signals of HIFs is collected to implement this approach. Then, DWT decomposes it to extract the features of each sample in the data set. The extracted features from this part are used as input to the SVM classification algorithm. The proposed idea is initially implemented on the IEEE 34-bus distribution test network. The proposed method achieves high capability and accuracy in detecting high-impedance faults. The proposed method is also applied to a real power distribution network in Markazi Province of Iran, yielding satisfactory results. EMTP-RV simulation software is used to simulate and evaluate the proposed method for power network modeling. Moreover, MATLAB software is used for feature extraction, and Python programming language in Google Colab and Spyder environment is applied to implement the SVM algorithm. The simulation results confirm the high accuracy of the suggested method. The main criteria obtained by the proposed method include accuracy, sensitivity, specificity, precision, F-score, and Dice, which are 99.581%, 98.684%, 100%, 100%, 99.338%, and 99.338%, respectively, for the test network, and 97.94%, 93.45%, 100%, 100%, 96.614%, and 96.618%, respectively, for the real power distribution network.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 3","pages":"1171-1183"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2056","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

High impedance faults (HIFs) can lead to crucial damage to the utility grid, such as the risk of fire in material assets, electricity supply interruptions, and long service restoration times. Due to their low current magnitude, conventional protective equipment, such as overcurrent relays, cannot detect these faults. Alternatively, the waveform and variation range of current in HIFs are similar to other phenomena, such as linear and nonlinear load changes and capacitor banks. This paper employs a support vector machine (SVM) classification algorithm that demonstrates reliable accuracy and discrete wavelet transform (DWT) in HIF detection. First, the data set containing measured current signals of HIFs is collected to implement this approach. Then, DWT decomposes it to extract the features of each sample in the data set. The extracted features from this part are used as input to the SVM classification algorithm. The proposed idea is initially implemented on the IEEE 34-bus distribution test network. The proposed method achieves high capability and accuracy in detecting high-impedance faults. The proposed method is also applied to a real power distribution network in Markazi Province of Iran, yielding satisfactory results. EMTP-RV simulation software is used to simulate and evaluate the proposed method for power network modeling. Moreover, MATLAB software is used for feature extraction, and Python programming language in Google Colab and Spyder environment is applied to implement the SVM algorithm. The simulation results confirm the high accuracy of the suggested method. The main criteria obtained by the proposed method include accuracy, sensitivity, specificity, precision, F-score, and Dice, which are 99.581%, 98.684%, 100%, 100%, 99.338%, and 99.338%, respectively, for the test network, and 97.94%, 93.45%, 100%, 100%, 96.614%, and 96.618%, respectively, for the real power distribution network.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
期刊最新文献
Issue Information Experimental Study on Underwater Explosive Weld Interface and Mechanical Properties of Carbon Steel–Stainless Steel Exploration of 3D Coal Seam Geological Modeling Visualization and Gas Content Prediction Technology Based on Borehole Data Research on the Applicability of Hybrid RANS/LES Models to Predict the Flow Behavior in Bulb Tubular Pump Under Rated and Stall Conditions High-Impedance Fault Detection in Distribution Networks Based on Support Vector Machine and Wavelet Transform Approach (Case Study: Markazi Province of Iran)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1