{"title":"Translated spherical harmonics for semi-global gravitational field modeling: examples for Martian moon Phobos and asteroid 433 Eros","authors":"Xuanyu Hu","doi":"10.1007/s00190-025-01944-8","DOIUrl":null,"url":null,"abstract":"<p>The gravitational field of a planetary body is most often modeled by an exterior spherical harmonic series, which is uniformly convergent outside the smallest mass-enclosing sphere centered at the origin of the coordinate system, known as the Brillouin sphere. The model can become unstable inside the spherical boundary. Rarely deliberated or emphasized is an obvious fact that the radius of the Brillouin sphere, which is the maximum radius coordinate of the body, changes with the origin. The sphere can thus be adjusted to fit a certain convex portion of irregular body shape via an appropriate coordinate translation, thereby maximizing the region of model stability above the body. We demonstrate that it is, while perhaps counterintuitive, rational to displace the coordinate origin from the center of figure, or even off the body entirely. We review concisely the theory and a method of spherical harmonic translation. We consider some textbook examples that illuminate the physical meaning and the practical advantage of the transformation, the discussion of which, as it turns out, is not so easily encountered. We provide seminormalized as well as fully normalized version of the algorithms, which are compact and easy to work with for low-degree applications. At little cost, the proposed approach enables the spherical harmonics to be comparable with the far more complicated ellipsoidal harmonics in performance in the case of two small objects, Phobos and 433 Eros.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"5 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-025-01944-8","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The gravitational field of a planetary body is most often modeled by an exterior spherical harmonic series, which is uniformly convergent outside the smallest mass-enclosing sphere centered at the origin of the coordinate system, known as the Brillouin sphere. The model can become unstable inside the spherical boundary. Rarely deliberated or emphasized is an obvious fact that the radius of the Brillouin sphere, which is the maximum radius coordinate of the body, changes with the origin. The sphere can thus be adjusted to fit a certain convex portion of irregular body shape via an appropriate coordinate translation, thereby maximizing the region of model stability above the body. We demonstrate that it is, while perhaps counterintuitive, rational to displace the coordinate origin from the center of figure, or even off the body entirely. We review concisely the theory and a method of spherical harmonic translation. We consider some textbook examples that illuminate the physical meaning and the practical advantage of the transformation, the discussion of which, as it turns out, is not so easily encountered. We provide seminormalized as well as fully normalized version of the algorithms, which are compact and easy to work with for low-degree applications. At little cost, the proposed approach enables the spherical harmonics to be comparable with the far more complicated ellipsoidal harmonics in performance in the case of two small objects, Phobos and 433 Eros.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics