An Integrated Fuzzy Neural Network and Topological Data Analysis for Molecular Graph Representation Learning and Property Forecasting.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2025-03-01 DOI:10.1002/minf.202400335
Phu Pham
{"title":"An Integrated Fuzzy Neural Network and Topological Data Analysis for Molecular Graph Representation Learning and Property Forecasting.","authors":"Phu Pham","doi":"10.1002/minf.202400335","DOIUrl":null,"url":null,"abstract":"<p><p>Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures. These models primarily focus on capturing local neighborhood information, often failing to retain global structural features essential for graph-level representation and classification tasks. Furthermore, their expressiveness is limited when learning topological structures in complex molecular graph datasets. To overcome these limitations, in this paper, we proposed a novel graph neural architecture which is an integration between neuro-fuzzy network and topological graph learning approach, naming as: FTPG. Specifically, within our proposed FTPG model, we introduce a novel approach to molecular graph representation and property prediction by integrating multi-scaled topological graph learning with advanced neural components. The architecture employs separate graph neural learning modules to effectively capture both local graph-based structures as well as global topological features. Moreover, to further address feature uncertainty in the global-view representation, a multi-layered neuro-fuzzy network is incorporated within our model to enhance the robustness and expressiveness of the learned molecular graph embeddings. This combinatorial approach can assist to leverage the strengths of multi-view and multi-modal neural learning, enabling FTPG to deliver superior performance in molecular graph tasks. Extensive experiments on real-world/benchmark molecular datasets demonstrate the effectiveness of our proposed FTPG model. It consistently outperforms state-of-the-art GNN-based baselines categorized in different approaches, including canonical local proximity message passing based, graph transformer-based, and topology-driven approaches.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 3","pages":"e202400335"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400335","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures. These models primarily focus on capturing local neighborhood information, often failing to retain global structural features essential for graph-level representation and classification tasks. Furthermore, their expressiveness is limited when learning topological structures in complex molecular graph datasets. To overcome these limitations, in this paper, we proposed a novel graph neural architecture which is an integration between neuro-fuzzy network and topological graph learning approach, naming as: FTPG. Specifically, within our proposed FTPG model, we introduce a novel approach to molecular graph representation and property prediction by integrating multi-scaled topological graph learning with advanced neural components. The architecture employs separate graph neural learning modules to effectively capture both local graph-based structures as well as global topological features. Moreover, to further address feature uncertainty in the global-view representation, a multi-layered neuro-fuzzy network is incorporated within our model to enhance the robustness and expressiveness of the learned molecular graph embeddings. This combinatorial approach can assist to leverage the strengths of multi-view and multi-modal neural learning, enabling FTPG to deliver superior performance in molecular graph tasks. Extensive experiments on real-world/benchmark molecular datasets demonstrate the effectiveness of our proposed FTPG model. It consistently outperforms state-of-the-art GNN-based baselines categorized in different approaches, including canonical local proximity message passing based, graph transformer-based, and topology-driven approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
An Integrated Fuzzy Neural Network and Topological Data Analysis for Molecular Graph Representation Learning and Property Forecasting. Molecular Odor Prediction Using Olfactory Receptor Information. A Molecular Representation to Identify Isofunctional Molecules. CoLiNN: A Tool for Fast Chemical Space Visualization of Combinatorial Libraries Without Enumeration. Exploration of the Global Minimum and Conical Intersection with Bayesian Optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1