{"title":"An Integrated Fuzzy Neural Network and Topological Data Analysis for Molecular Graph Representation Learning and Property Forecasting.","authors":"Phu Pham","doi":"10.1002/minf.202400335","DOIUrl":null,"url":null,"abstract":"<p><p>Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures. These models primarily focus on capturing local neighborhood information, often failing to retain global structural features essential for graph-level representation and classification tasks. Furthermore, their expressiveness is limited when learning topological structures in complex molecular graph datasets. To overcome these limitations, in this paper, we proposed a novel graph neural architecture which is an integration between neuro-fuzzy network and topological graph learning approach, naming as: FTPG. Specifically, within our proposed FTPG model, we introduce a novel approach to molecular graph representation and property prediction by integrating multi-scaled topological graph learning with advanced neural components. The architecture employs separate graph neural learning modules to effectively capture both local graph-based structures as well as global topological features. Moreover, to further address feature uncertainty in the global-view representation, a multi-layered neuro-fuzzy network is incorporated within our model to enhance the robustness and expressiveness of the learned molecular graph embeddings. This combinatorial approach can assist to leverage the strengths of multi-view and multi-modal neural learning, enabling FTPG to deliver superior performance in molecular graph tasks. Extensive experiments on real-world/benchmark molecular datasets demonstrate the effectiveness of our proposed FTPG model. It consistently outperforms state-of-the-art GNN-based baselines categorized in different approaches, including canonical local proximity message passing based, graph transformer-based, and topology-driven approaches.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 3","pages":"e202400335"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400335","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures. These models primarily focus on capturing local neighborhood information, often failing to retain global structural features essential for graph-level representation and classification tasks. Furthermore, their expressiveness is limited when learning topological structures in complex molecular graph datasets. To overcome these limitations, in this paper, we proposed a novel graph neural architecture which is an integration between neuro-fuzzy network and topological graph learning approach, naming as: FTPG. Specifically, within our proposed FTPG model, we introduce a novel approach to molecular graph representation and property prediction by integrating multi-scaled topological graph learning with advanced neural components. The architecture employs separate graph neural learning modules to effectively capture both local graph-based structures as well as global topological features. Moreover, to further address feature uncertainty in the global-view representation, a multi-layered neuro-fuzzy network is incorporated within our model to enhance the robustness and expressiveness of the learned molecular graph embeddings. This combinatorial approach can assist to leverage the strengths of multi-view and multi-modal neural learning, enabling FTPG to deliver superior performance in molecular graph tasks. Extensive experiments on real-world/benchmark molecular datasets demonstrate the effectiveness of our proposed FTPG model. It consistently outperforms state-of-the-art GNN-based baselines categorized in different approaches, including canonical local proximity message passing based, graph transformer-based, and topology-driven approaches.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.