CoLiNN: A Tool for Fast Chemical Space Visualization of Combinatorial Libraries Without Enumeration.

IF 3.1 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2025-03-01 DOI:10.1002/minf.202400263
Regina Pikalyova, Tagir Akhmetshin, Dragos Horvath, Alexandre Varnek
{"title":"CoLiNN: A Tool for Fast Chemical Space Visualization of Combinatorial Libraries Without Enumeration.","authors":"Regina Pikalyova, Tagir Akhmetshin, Dragos Horvath, Alexandre Varnek","doi":"10.1002/minf.202400263","DOIUrl":null,"url":null,"abstract":"<p><p>Visualization of the combinatorial library chemical space provides a comprehensive overview of available compound classes, their diversity, and physicochemical property distribution - key factors in drug discovery. Typically, this visualization requires time- and resource-consuming compound enumeration, standardization, descriptor calculation, and dimensionality reduction. In this study, we present the Combinatorial Library Neural Network (CoLiNN) designed to predict the projection of compounds on a 2D chemical space map using only their building blocks and reaction information, thus eliminating the need for compound enumeration. Trained on 2.5 K virtual DNA-Encoded Libraries (DELs), CoLiNN demonstrated high predictive performance, accurately predicting the compound position on Generative Topographic Maps (GTMs). GTMs predicted by CoLiNN were found very similar to the maps built for enumerated structures. In the library comparison task, we compared the GTMs of DELs and the ChEMBL database. The similarity-based DELs/ChEMBL rankings obtained with \"true\" and CoLiNN predicted GTMs were consistent. Therefore, CoLiNN has the potential to become the go-to tool for combinatorial compound library design - it can explore the library design space more efficiently by skipping the compound enumeration.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 3","pages":"e202400263"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11916640/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400263","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Visualization of the combinatorial library chemical space provides a comprehensive overview of available compound classes, their diversity, and physicochemical property distribution - key factors in drug discovery. Typically, this visualization requires time- and resource-consuming compound enumeration, standardization, descriptor calculation, and dimensionality reduction. In this study, we present the Combinatorial Library Neural Network (CoLiNN) designed to predict the projection of compounds on a 2D chemical space map using only their building blocks and reaction information, thus eliminating the need for compound enumeration. Trained on 2.5 K virtual DNA-Encoded Libraries (DELs), CoLiNN demonstrated high predictive performance, accurately predicting the compound position on Generative Topographic Maps (GTMs). GTMs predicted by CoLiNN were found very similar to the maps built for enumerated structures. In the library comparison task, we compared the GTMs of DELs and the ChEMBL database. The similarity-based DELs/ChEMBL rankings obtained with "true" and CoLiNN predicted GTMs were consistent. Therefore, CoLiNN has the potential to become the go-to tool for combinatorial compound library design - it can explore the library design space more efficiently by skipping the compound enumeration.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个不需要枚举的组合库的快速化学空间可视化工具。
可视化的组合库化学空间提供了一个全面的概述,可用的化合物类,它们的多样性和物理化学性质分布-药物发现的关键因素。通常,这种可视化需要耗费时间和资源的复合枚举、标准化、描述符计算和降维。在这项研究中,我们提出了组合库神经网络(CoLiNN),旨在仅使用它们的构建块和反应信息来预测化合物在二维化学空间图上的投影,从而消除了对化合物枚举的需要。在2.5 K的虚拟dna编码库(DELs)上训练,CoLiNN显示出很高的预测性能,可以准确预测生成地形图(GTMs)上的化合物位置。CoLiNN预测的GTMs与为枚举结构构建的映射非常相似。在库比较任务中,我们比较了DELs和ChEMBL数据库的GTMs。基于相似性的DELs/ChEMBL排名与“true”和CoLiNN预测的GTMs是一致的。因此,CoLiNN有潜力成为组合复合库设计的首选工具——它可以通过跳过复合枚举更有效地探索库设计空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
Transformer Learning in Sequence-Based Drug Design Depends on Compound Memorization and Similarity of Sequence-Compound Pairs. Update and ADMET Profile of the Latin American Natural Product Database: LANaPDB. Structure-Activity Relationships and Design of Focused Libraries Tailored for Staphylococcus Aureus Inhibition. Exploration of (Ultra)Big Chemical Spaces. Ligand B-Factor Index: A Metric for Prioritizing Protein-Ligand Complexes in Docking.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1