Regina Pikalyova, Tagir Akhmetshin, Dragos Horvath, Alexandre Varnek
{"title":"CoLiNN: A Tool for Fast Chemical Space Visualization of Combinatorial Libraries Without Enumeration.","authors":"Regina Pikalyova, Tagir Akhmetshin, Dragos Horvath, Alexandre Varnek","doi":"10.1002/minf.202400263","DOIUrl":null,"url":null,"abstract":"<p><p>Visualization of the combinatorial library chemical space provides a comprehensive overview of available compound classes, their diversity, and physicochemical property distribution - key factors in drug discovery. Typically, this visualization requires time- and resource-consuming compound enumeration, standardization, descriptor calculation, and dimensionality reduction. In this study, we present the Combinatorial Library Neural Network (CoLiNN) designed to predict the projection of compounds on a 2D chemical space map using only their building blocks and reaction information, thus eliminating the need for compound enumeration. Trained on 2.5 K virtual DNA-Encoded Libraries (DELs), CoLiNN demonstrated high predictive performance, accurately predicting the compound position on Generative Topographic Maps (GTMs). GTMs predicted by CoLiNN were found very similar to the maps built for enumerated structures. In the library comparison task, we compared the GTMs of DELs and the ChEMBL database. The similarity-based DELs/ChEMBL rankings obtained with \"true\" and CoLiNN predicted GTMs were consistent. Therefore, CoLiNN has the potential to become the go-to tool for combinatorial compound library design - it can explore the library design space more efficiently by skipping the compound enumeration.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 3","pages":"e202400263"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11916640/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400263","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Visualization of the combinatorial library chemical space provides a comprehensive overview of available compound classes, their diversity, and physicochemical property distribution - key factors in drug discovery. Typically, this visualization requires time- and resource-consuming compound enumeration, standardization, descriptor calculation, and dimensionality reduction. In this study, we present the Combinatorial Library Neural Network (CoLiNN) designed to predict the projection of compounds on a 2D chemical space map using only their building blocks and reaction information, thus eliminating the need for compound enumeration. Trained on 2.5 K virtual DNA-Encoded Libraries (DELs), CoLiNN demonstrated high predictive performance, accurately predicting the compound position on Generative Topographic Maps (GTMs). GTMs predicted by CoLiNN were found very similar to the maps built for enumerated structures. In the library comparison task, we compared the GTMs of DELs and the ChEMBL database. The similarity-based DELs/ChEMBL rankings obtained with "true" and CoLiNN predicted GTMs were consistent. Therefore, CoLiNN has the potential to become the go-to tool for combinatorial compound library design - it can explore the library design space more efficiently by skipping the compound enumeration.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.