{"title":"Molecular Odor Prediction Using Olfactory Receptor Information.","authors":"Yuta Wakutsu, Hiromasa Kaneko","doi":"10.1002/minf.202400274","DOIUrl":null,"url":null,"abstract":"<p><p>In fragrance development, the framework development process is a bottleneck from the perspective of labor, cost, and human resource development. Odors vary greatly depending on the structure and functional groups of the molecule. Although odor has been predicted from only the structure of molecules, its practical application remains elusive. In this study, we developed a model for predicting the odor of molecules that have only small differences in structure. Focusing on the mechanism of human olfaction, we divided the mechanism into three levels and constructed three models: a classification model that predicts the presence or absence of binding between molecules and olfactory receptors, a regression model that predicts the strength of binding, and a classification model that predicts the presence or absence of odor based on the strength of binding. Olfactory receptors were used as descriptors to discriminate between similar molecular odors. Our models predicted odor differences between some similar molecules, including optical isomers.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 3","pages":"e202400274"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400274","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
In fragrance development, the framework development process is a bottleneck from the perspective of labor, cost, and human resource development. Odors vary greatly depending on the structure and functional groups of the molecule. Although odor has been predicted from only the structure of molecules, its practical application remains elusive. In this study, we developed a model for predicting the odor of molecules that have only small differences in structure. Focusing on the mechanism of human olfaction, we divided the mechanism into three levels and constructed three models: a classification model that predicts the presence or absence of binding between molecules and olfactory receptors, a regression model that predicts the strength of binding, and a classification model that predicts the presence or absence of odor based on the strength of binding. Olfactory receptors were used as descriptors to discriminate between similar molecular odors. Our models predicted odor differences between some similar molecules, including optical isomers.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.