Molecular Odor Prediction Using Olfactory Receptor Information.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2025-03-01 DOI:10.1002/minf.202400274
Yuta Wakutsu, Hiromasa Kaneko
{"title":"Molecular Odor Prediction Using Olfactory Receptor Information.","authors":"Yuta Wakutsu, Hiromasa Kaneko","doi":"10.1002/minf.202400274","DOIUrl":null,"url":null,"abstract":"<p><p>In fragrance development, the framework development process is a bottleneck from the perspective of labor, cost, and human resource development. Odors vary greatly depending on the structure and functional groups of the molecule. Although odor has been predicted from only the structure of molecules, its practical application remains elusive. In this study, we developed a model for predicting the odor of molecules that have only small differences in structure. Focusing on the mechanism of human olfaction, we divided the mechanism into three levels and constructed three models: a classification model that predicts the presence or absence of binding between molecules and olfactory receptors, a regression model that predicts the strength of binding, and a classification model that predicts the presence or absence of odor based on the strength of binding. Olfactory receptors were used as descriptors to discriminate between similar molecular odors. Our models predicted odor differences between some similar molecules, including optical isomers.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 3","pages":"e202400274"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400274","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

In fragrance development, the framework development process is a bottleneck from the perspective of labor, cost, and human resource development. Odors vary greatly depending on the structure and functional groups of the molecule. Although odor has been predicted from only the structure of molecules, its practical application remains elusive. In this study, we developed a model for predicting the odor of molecules that have only small differences in structure. Focusing on the mechanism of human olfaction, we divided the mechanism into three levels and constructed three models: a classification model that predicts the presence or absence of binding between molecules and olfactory receptors, a regression model that predicts the strength of binding, and a classification model that predicts the presence or absence of odor based on the strength of binding. Olfactory receptors were used as descriptors to discriminate between similar molecular odors. Our models predicted odor differences between some similar molecules, including optical isomers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
An Integrated Fuzzy Neural Network and Topological Data Analysis for Molecular Graph Representation Learning and Property Forecasting. Molecular Odor Prediction Using Olfactory Receptor Information. A Molecular Representation to Identify Isofunctional Molecules. CoLiNN: A Tool for Fast Chemical Space Visualization of Combinatorial Libraries Without Enumeration. Exploration of the Global Minimum and Conical Intersection with Bayesian Optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1