Effects of 3D Channel Shape on the Performance of Nanoscale Gate-All-Around FETs

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2025-03-03 DOI:10.1109/TNANO.2025.3546872
Min Kyun Sohn;Sang-Hoon Kim;Seong Hyun Lee;Jeong Woo Park;Dongwoo Suh
{"title":"Effects of 3D Channel Shape on the Performance of Nanoscale Gate-All-Around FETs","authors":"Min Kyun Sohn;Sang-Hoon Kim;Seong Hyun Lee;Jeong Woo Park;Dongwoo Suh","doi":"10.1109/TNANO.2025.3546872","DOIUrl":null,"url":null,"abstract":"Recent research on transistors has focused on gate-all-around (GAA) structures, which possess better gate controllability than previous fin field-effect transistor (FinFET) structures. The characteristics of these devices have been optimized through different channel shapes. However, the characteristics of GAA-FETs with channels that have the same cross-sectional area warrant further research. In this study, we simulated n-type GAA-FETs using the Global TCAD Solutions simulation tool to analyze the effective characteristics obtained by setting equal cross-sectional areas. The results show that the total on-current exhibited up to 40.5% enhancement based on shape for the same area. Similarly, under the same conditions, the on/off current ratio exhibited a difference of approximately 1.5 times based on the shape. These findings help determine the optimal shape of the GAA channel and predict the performance when physical limitations restrict the channel shape. Furthermore, they contribute to improving the characteristics of GAA-FETs in mass production.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"129-133"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10908690/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recent research on transistors has focused on gate-all-around (GAA) structures, which possess better gate controllability than previous fin field-effect transistor (FinFET) structures. The characteristics of these devices have been optimized through different channel shapes. However, the characteristics of GAA-FETs with channels that have the same cross-sectional area warrant further research. In this study, we simulated n-type GAA-FETs using the Global TCAD Solutions simulation tool to analyze the effective characteristics obtained by setting equal cross-sectional areas. The results show that the total on-current exhibited up to 40.5% enhancement based on shape for the same area. Similarly, under the same conditions, the on/off current ratio exhibited a difference of approximately 1.5 times based on the shape. These findings help determine the optimal shape of the GAA channel and predict the performance when physical limitations restrict the channel shape. Furthermore, they contribute to improving the characteristics of GAA-FETs in mass production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维沟道形状对纳米级全栅极场效应晶体管性能的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
Effects of 3D Channel Shape on the Performance of Nanoscale Gate-All-Around FETs Influence of Temperature, Strain Rate, and Vacancies on the Mechanical Properties of Aluminum-Doped Bilayer Silicene Dynamic Analysis of the Effect of the Device-to-Device Variability of Real-World Memristors on the Implementation of Uncoupled Memristive Cellular Nonlinear Networks Ti-Doped ZnO Nanowires: A Breakthrough in Non-Volatile Resistive Memory Application ANN-Driven Modeling of Gate-All-Around Transistors Incorporating Complete Current Profiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1