{"title":"Genetic Diversity in Antimicrobial Resistance Determinants Among Pathogenic Pseudomonas aeruginosa in India.","authors":"Milan Rathod, Suraj Shukla, Paparaidu Sanapala, Ekadashi Rajni, Geeti Maheshwari, Devarshi Gajjar","doi":"10.1007/s00284-025-04174-5","DOIUrl":null,"url":null,"abstract":"<p><p>The drastic rise in antibiotic resistance has become a global challenge, including India, due to high morbidity. The delayed identification and lack of treatment are the major causes of death. However, there is a shortage of precise information on the specific resistance pattern and sequence types of Pseudomonas aeruginosa from India that can help in diagnostics and therapy. A total of 16 clinical isolates were collected from the western region of India, along with 181 P. aeruginosa genomes of India from public database were retrieved and thoroughly analysed for antibiotics resistance determinants for associated sequence types and O-serotypes using different bioinformatics tools. Of all collected isolates (n = 16), 9 were extensively drug-resistant (XDR), 6 were multidrug-resistant (MDR), and only 1 isolate was susceptible to selected antibiotics. ST357 (n = 23; 11.6%) was the most frequent, followed by ST308, and ST1203. In serotyping, O11 (n = 85; 43%) was most prevalent. A novel ST4937 was reported and submitted to PubMLST. bla<sub>NDM-1</sub> carbapenemase was found in (n = 45; 22.8%) isolates, whereas class D bla<sub>OXA-488</sub> was present in (n = 38; 19.2%) isolates, further, several variants were found for class C bla<sub>PDC</sub> genes, where bla<sub>PDC-3</sub> and bla<sub>PDC-19a</sub> were found to be predominant. We discovered that the amounts of carbapenemases and extended spectrum beta-lactamases (ESBL) genes were lower in India. This can be a relief sometimes, but a rise in high-risk clones could lead to longer hospital stays and more deaths. Therefore, ongoing surveillance of these strains is essential for effective infection management and containment of their spread.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 5","pages":"189"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-025-04174-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The drastic rise in antibiotic resistance has become a global challenge, including India, due to high morbidity. The delayed identification and lack of treatment are the major causes of death. However, there is a shortage of precise information on the specific resistance pattern and sequence types of Pseudomonas aeruginosa from India that can help in diagnostics and therapy. A total of 16 clinical isolates were collected from the western region of India, along with 181 P. aeruginosa genomes of India from public database were retrieved and thoroughly analysed for antibiotics resistance determinants for associated sequence types and O-serotypes using different bioinformatics tools. Of all collected isolates (n = 16), 9 were extensively drug-resistant (XDR), 6 were multidrug-resistant (MDR), and only 1 isolate was susceptible to selected antibiotics. ST357 (n = 23; 11.6%) was the most frequent, followed by ST308, and ST1203. In serotyping, O11 (n = 85; 43%) was most prevalent. A novel ST4937 was reported and submitted to PubMLST. blaNDM-1 carbapenemase was found in (n = 45; 22.8%) isolates, whereas class D blaOXA-488 was present in (n = 38; 19.2%) isolates, further, several variants were found for class C blaPDC genes, where blaPDC-3 and blaPDC-19a were found to be predominant. We discovered that the amounts of carbapenemases and extended spectrum beta-lactamases (ESBL) genes were lower in India. This can be a relief sometimes, but a rise in high-risk clones could lead to longer hospital stays and more deaths. Therefore, ongoing surveillance of these strains is essential for effective infection management and containment of their spread.
期刊介绍:
Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment.
Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas:
physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.