Nadja Mannowetz, Sanny S W Chung, Soma Maitra, Md Abdullah Al Noman, Henry L Wong, Narsihmulu Cheryala, Akash Bakshi, Debra J Wolgemuth, Gunda I Georg
{"title":"Targeting the retinoid signaling pathway with YCT-529 for effective and reversible oral contraception in mice and primates.","authors":"Nadja Mannowetz, Sanny S W Chung, Soma Maitra, Md Abdullah Al Noman, Henry L Wong, Narsihmulu Cheryala, Akash Bakshi, Debra J Wolgemuth, Gunda I Georg","doi":"10.1038/s43856-025-00752-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The retinoic acid receptor alpha (Rarα) has been validated as a male contraceptive target by genetic knockouts resulting in male sterility. The effects on spermatogenesis in the absence of RARα resemble the loss of RAR signaling in vitamin A deficiency, and the mice are otherwise normal. The effects on spermatogenesis in animals treated orally with the dual RARα/RARγ antagonist BMS-189453 closely phenocopies the absence of RARα function. Notably, the resulting male sterility is reversible. We, therefore, wished to identify RARα-selective inhibitors for potential male non-hormonal contraception.</p><p><strong>Methods: </strong>YCT-529 was investigated for RARα selective inhibition, physicochemical characteristics, oral bioavailability, and pharmacokinetic properties in mice and non-human primates. It was assessed in mouse mating trials to determine the most effective dosing regimen to induce infertility in male mice and in male non-human primates to reduce sperm levels.</p><p><strong>Results: </strong>Characterization of YCT-529 shows suitable biochemical, physicochemical, and pharmacokinetic properties for in vivo testing. YCT-529 inhibits mouse fertility of male mice within 4 weeks of oral administration, correlating with disrupted spermatogenesis demonstrating specific inhibition of the RARα pathway. Within 6 weeks after cessation of dosing, mouse fertility reverses. Furthermore, YCT-529 inhibits sperm production in a non-human primate model within 2 weeks of oral dosing without adverse side effects. Within 10-15 weeks after cessation of dosing, non-human primates' sperm counts fully reverses.</p><p><strong>Conclusions: </strong>These results lay the groundwork for evaluating YCT-529 in human clinical trials.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"68"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906769/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00752-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The retinoic acid receptor alpha (Rarα) has been validated as a male contraceptive target by genetic knockouts resulting in male sterility. The effects on spermatogenesis in the absence of RARα resemble the loss of RAR signaling in vitamin A deficiency, and the mice are otherwise normal. The effects on spermatogenesis in animals treated orally with the dual RARα/RARγ antagonist BMS-189453 closely phenocopies the absence of RARα function. Notably, the resulting male sterility is reversible. We, therefore, wished to identify RARα-selective inhibitors for potential male non-hormonal contraception.
Methods: YCT-529 was investigated for RARα selective inhibition, physicochemical characteristics, oral bioavailability, and pharmacokinetic properties in mice and non-human primates. It was assessed in mouse mating trials to determine the most effective dosing regimen to induce infertility in male mice and in male non-human primates to reduce sperm levels.
Results: Characterization of YCT-529 shows suitable biochemical, physicochemical, and pharmacokinetic properties for in vivo testing. YCT-529 inhibits mouse fertility of male mice within 4 weeks of oral administration, correlating with disrupted spermatogenesis demonstrating specific inhibition of the RARα pathway. Within 6 weeks after cessation of dosing, mouse fertility reverses. Furthermore, YCT-529 inhibits sperm production in a non-human primate model within 2 weeks of oral dosing without adverse side effects. Within 10-15 weeks after cessation of dosing, non-human primates' sperm counts fully reverses.
Conclusions: These results lay the groundwork for evaluating YCT-529 in human clinical trials.