A Direct Torque Control Scheme With Integrated Commutation Torque Ripple Reduction for BLDC Motor Drives With Open-End Windings

IF 5 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of power electronics Pub Date : 2025-02-25 DOI:10.1109/OJPEL.2025.3545738
Hari Krishna U;Rajeevan P P
{"title":"A Direct Torque Control Scheme With Integrated Commutation Torque Ripple Reduction for BLDC Motor Drives With Open-End Windings","authors":"Hari Krishna U;Rajeevan P P","doi":"10.1109/OJPEL.2025.3545738","DOIUrl":null,"url":null,"abstract":"This article presents a direct torque control (DTC) scheme with an integrated switching strategy to reduce commutation torque ripple in a dual inverter-fed three-phase BLDC motor with open-end stator windings. The proposed scheme covers both low- and high-speed operation, utilizing voltage space vector structures in two-phase and three-phase conduction modes. Analysis shows that utilizing three-phase conducting voltage vectors during the commutation interval significantly reduces torque ripple compared to the DTC scheme using only two-phase conducting voltage space vectors. The two-phase conducting voltage vectors however maximize electromagnetic torque during the non-commutation period. The proposed scheme results in unipolar switching that minimizes dv/dt leading to further reduction in torque ripple. Experimental validation on a laboratory prototype using a TMS320F28377S controller confirms the effectiveness of the proposed method.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"449-463"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902603","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10902603/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a direct torque control (DTC) scheme with an integrated switching strategy to reduce commutation torque ripple in a dual inverter-fed three-phase BLDC motor with open-end stator windings. The proposed scheme covers both low- and high-speed operation, utilizing voltage space vector structures in two-phase and three-phase conduction modes. Analysis shows that utilizing three-phase conducting voltage vectors during the commutation interval significantly reduces torque ripple compared to the DTC scheme using only two-phase conducting voltage space vectors. The two-phase conducting voltage vectors however maximize electromagnetic torque during the non-commutation period. The proposed scheme results in unipolar switching that minimizes dv/dt leading to further reduction in torque ripple. Experimental validation on a laboratory prototype using a TMS320F28377S controller confirms the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
A Direct Torque Control Scheme With Integrated Commutation Torque Ripple Reduction for BLDC Motor Drives With Open-End Windings A Soft-Switched High-Conversion-Ratio Quasi-Resonant Flying Capacitor DC–DC Converter A Simple Carrier-Based Neutral Point Voltage Control Strategy for NPC Three-Level Inverters Decoupling Current Ripple in PHIL PMSM Emulation Using LCL Filter: A Fundamental Frequency Analysis DC Bus Voltage High-Frequency Disturbances Analysis for DC Microgrids With Long Connections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1