{"title":"Synthesis and electrochemical performance enhancement of Li2MnSiO4 cathode material for lithium-ion batteries via Mn-site Cr doping","authors":"Yuqi Yao , Xin Yan , Shao-hua Luo , Jing Guo","doi":"10.1016/j.ssi.2025.116847","DOIUrl":null,"url":null,"abstract":"<div><div>Li<sub>2</sub>MnSiO<sub>4</sub> stands out as a promising cathode material for lithium-ion batteries (LIBs) because of its remarkable theoretical capacity, excellent thermal stability, low cost, and environmental benefits. However, its practical application is hindered by poor electronic conductivity and lithium-ion diffusion rates. To overcome these challenges, Li<sub>2</sub>Mn<sub>1-x</sub>Cr<sub>x</sub>SiO<sub>4</sub> cathode materials were prepared through solid-state doping and a two-step calcination method. By doping Cr into the Mn site of Li<sub>2</sub>MnSiO<sub>4</sub>, the electrochemical performance can be significantly improved. TG-DTA tests were conducted to determine the optimal calcination temperature to ensure stable synthesis of the material. The research found that an optimal Cr doping level of 0.06 resulted in superior electrochemical performance, achieving a discharge capacity of 174.9 mAh g<sup>−1</sup> at 0.1C. This improvement is due to the reduction in grain size, which increases the specific surface area and enhances Li<sup>+</sup> diffusion. Additionally, the larger ionic radius of Cr creates more vacancies in the lattice, facilitating electron and ion migration. The Cr<img>O bond, being stronger than the Mn<img>O bond, further contributes to improved structural stability. Thus, Cr doping effectively addresses conductivity and diffusion limitations, leading to superior electrochemical performance and advancing high-performance LIBs.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116847"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000669","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Li2MnSiO4 stands out as a promising cathode material for lithium-ion batteries (LIBs) because of its remarkable theoretical capacity, excellent thermal stability, low cost, and environmental benefits. However, its practical application is hindered by poor electronic conductivity and lithium-ion diffusion rates. To overcome these challenges, Li2Mn1-xCrxSiO4 cathode materials were prepared through solid-state doping and a two-step calcination method. By doping Cr into the Mn site of Li2MnSiO4, the electrochemical performance can be significantly improved. TG-DTA tests were conducted to determine the optimal calcination temperature to ensure stable synthesis of the material. The research found that an optimal Cr doping level of 0.06 resulted in superior electrochemical performance, achieving a discharge capacity of 174.9 mAh g−1 at 0.1C. This improvement is due to the reduction in grain size, which increases the specific surface area and enhances Li+ diffusion. Additionally, the larger ionic radius of Cr creates more vacancies in the lattice, facilitating electron and ion migration. The CrO bond, being stronger than the MnO bond, further contributes to improved structural stability. Thus, Cr doping effectively addresses conductivity and diffusion limitations, leading to superior electrochemical performance and advancing high-performance LIBs.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.