{"title":"Structural transformations and proton conductivity of Me4NHSO4 and nanocomposites Me4NHSO4 - SiO2","authors":"V.G. Ponomareva, I.N. Bagryantseva, E.S. Shutova, T.N. Drebushchak, N.F. Uvarov","doi":"10.1016/j.ssi.2025.116810","DOIUrl":null,"url":null,"abstract":"<div><div>The study is devoted to the quaternary ammonium compounds - Me<sub>4</sub>NHSO<sub>4</sub>. The detailed analysis of the proton conductivity and structural transformations of Me<sub>4</sub>NHSO<sub>4</sub> in a wide temperature range was carried out firstly. A phase transition of Me<sub>4</sub>NHSO<sub>4</sub> at 120°С associated with the appearance of intermediate phase with some orientational disorder of sulfate tetrahedra was observed. The slow rate phase transition at 210 °C to a high-temperature phase was firstly observed. Presumably the high-temperature phase corresponds to a tetragonal syngony. The temperature dependence of the proton conductivity fully corresponds to the structural phase transitions with the significant change of the activation energy at 120 °C from 1.8 eV to 0.7 eV up to 250 °C. The proton conductivity of Me<sub>4</sub>NHSO<sub>4</sub> of the high temperature phase is an order of magnitude higher than that of the related Et<sub>4</sub>NHSO<sub>4</sub> compound and reaches 4*10<sup>−4</sup> S/cm at 250 °C. The electrotransport and structural characteristics of Me<sub>4</sub>NHSO<sub>4</sub> and dispersed silicon dioxide containing composites were also investigated. The investigated (1-x)Me<sub>4</sub>NHSO<sub>4</sub>–xSiO<sub>2</sub> composites (x = 0.5 and 0.7) are characterized by the different degree of salt amorhpization and the conductivity increase.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116810"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000293","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The study is devoted to the quaternary ammonium compounds - Me4NHSO4. The detailed analysis of the proton conductivity and structural transformations of Me4NHSO4 in a wide temperature range was carried out firstly. A phase transition of Me4NHSO4 at 120°С associated with the appearance of intermediate phase with some orientational disorder of sulfate tetrahedra was observed. The slow rate phase transition at 210 °C to a high-temperature phase was firstly observed. Presumably the high-temperature phase corresponds to a tetragonal syngony. The temperature dependence of the proton conductivity fully corresponds to the structural phase transitions with the significant change of the activation energy at 120 °C from 1.8 eV to 0.7 eV up to 250 °C. The proton conductivity of Me4NHSO4 of the high temperature phase is an order of magnitude higher than that of the related Et4NHSO4 compound and reaches 4*10−4 S/cm at 250 °C. The electrotransport and structural characteristics of Me4NHSO4 and dispersed silicon dioxide containing composites were also investigated. The investigated (1-x)Me4NHSO4–xSiO2 composites (x = 0.5 and 0.7) are characterized by the different degree of salt amorhpization and the conductivity increase.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.