Adaptive meta-modeling of evapotranspiration in arid agricultural regions of Saudi Arabia using climatic factors, drought indices and MODIS data

IF 4.7 2区 地球科学 Q1 WATER RESOURCES Journal of Hydrology-Regional Studies Pub Date : 2025-03-17 DOI:10.1016/j.ejrh.2025.102279
Osama Elsherbiny , Salah Elsayed , Obaid Aldosari , Muhammad Sohail Memon , Ahmed Elbeltagi
{"title":"Adaptive meta-modeling of evapotranspiration in arid agricultural regions of Saudi Arabia using climatic factors, drought indices and MODIS data","authors":"Osama Elsherbiny ,&nbsp;Salah Elsayed ,&nbsp;Obaid Aldosari ,&nbsp;Muhammad Sohail Memon ,&nbsp;Ahmed Elbeltagi","doi":"10.1016/j.ejrh.2025.102279","DOIUrl":null,"url":null,"abstract":"<div><div><strong>Study Region:</strong> The research was conducted in three arid agricultural regions of Saudi Arabia: Wadi Ad-Dawasir, Ranya, and Abha.</div><div><strong>Study Focus:</strong> The objective is to develop an intelligent approach that utilizes ET-AI (Release 1, developed by Osama Elsherbiny), an accessible and user-friendly software, to compute actual evapotranspiration (AET) with both speed and accuracy. This can enhance irrigation efficiency and optimize water resource management. The data collected from 2000 to 2023 encompass four environmental factors (EF), two drought indices (DI), and six MODIS spectral indices (SI). Machine learning models, including the backpropagation neural network (BPNN) and XGBoost Regressor (XGB), enhanced with an adaptive meta-model (AMM) strategy, were evaluated for predicting monthly AET. The best-performing model was designated based on statistical metrics, with a focus on minimizing discrepancies between predicted and actual AET values.</div><div><strong>New Hydrological Insights for the Region:</strong> The results revealed robust correlations between AET and the combination of climatic water deficit (Def) with minimum (Tmin) or maximum temperature (Tmax), with R² values ranging from 0.70–0.67 in Wadi Ad-Dawasir, 0.59–0.57 in Ranya, 0.80–0.77 in Abha, and 0.64–0.55 for combined data. These findings highlight the regional sensitivity of AET to temperature and water deficit variations, offering valuable insights for water management strategies. Furthermore, the study reveals distinct spatial patterns of evapotranspiration dynamics across the region, which are crucial for improving irrigation practices under varying climate conditions. The BPNN-AMM model, deploying eleven EF-DI-SI features, delivered superior performance (R²=0.914, RMSE=6.115) compared to the standalone BPNN model (R²=0.850, RMSE=7.289). It also outperformed the XGB-AMM model with seven hybrid traits (R²=0.869, RMSE=9.285), in contrast to the separate XGB model (R²=0.684, RMSE=10.584). By refining the precision of AET predictions, the model clarifies water balance processes in arid regions. These insights have the potential to guide regional water resource management and enable real-time AET monitoring. The developed software is available for access at (<span><span>https://drive.google.com/file/d/1dPMiDzngtzDIY65xIyo8MAIVbJMudeBc</span><svg><path></path></svg></span>).</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"59 ","pages":"Article 102279"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221458182500103X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study Region: The research was conducted in three arid agricultural regions of Saudi Arabia: Wadi Ad-Dawasir, Ranya, and Abha.
Study Focus: The objective is to develop an intelligent approach that utilizes ET-AI (Release 1, developed by Osama Elsherbiny), an accessible and user-friendly software, to compute actual evapotranspiration (AET) with both speed and accuracy. This can enhance irrigation efficiency and optimize water resource management. The data collected from 2000 to 2023 encompass four environmental factors (EF), two drought indices (DI), and six MODIS spectral indices (SI). Machine learning models, including the backpropagation neural network (BPNN) and XGBoost Regressor (XGB), enhanced with an adaptive meta-model (AMM) strategy, were evaluated for predicting monthly AET. The best-performing model was designated based on statistical metrics, with a focus on minimizing discrepancies between predicted and actual AET values.
New Hydrological Insights for the Region: The results revealed robust correlations between AET and the combination of climatic water deficit (Def) with minimum (Tmin) or maximum temperature (Tmax), with R² values ranging from 0.70–0.67 in Wadi Ad-Dawasir, 0.59–0.57 in Ranya, 0.80–0.77 in Abha, and 0.64–0.55 for combined data. These findings highlight the regional sensitivity of AET to temperature and water deficit variations, offering valuable insights for water management strategies. Furthermore, the study reveals distinct spatial patterns of evapotranspiration dynamics across the region, which are crucial for improving irrigation practices under varying climate conditions. The BPNN-AMM model, deploying eleven EF-DI-SI features, delivered superior performance (R²=0.914, RMSE=6.115) compared to the standalone BPNN model (R²=0.850, RMSE=7.289). It also outperformed the XGB-AMM model with seven hybrid traits (R²=0.869, RMSE=9.285), in contrast to the separate XGB model (R²=0.684, RMSE=10.584). By refining the precision of AET predictions, the model clarifies water balance processes in arid regions. These insights have the potential to guide regional water resource management and enable real-time AET monitoring. The developed software is available for access at (https://drive.google.com/file/d/1dPMiDzngtzDIY65xIyo8MAIVbJMudeBc).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究地区:研究在沙特阿拉伯的三个干旱农业区进行:研究重点:研究目的:开发一种智能方法,利用 ET-AI(第 1 版,由 Osama Elsherbiny 开发)这一方便易用的软件,快速准确地计算实际蒸散量(AET)。这可以提高灌溉效率,优化水资源管理。从 2000 年到 2023 年收集的数据包括四个环境因子 (EF)、两个干旱指数 (DI) 和六个 MODIS 光谱指数 (SI)。评估了预测月度 AET 的机器学习模型,包括反向传播神经网络 (BPNN) 和 XGBoost 回归器 (XGB),并采用自适应元模型 (AMM) 策略进行了增强。根据统计指标指定了表现最佳的模型,重点是最大限度地减少预测值与实际 AET 值之间的差异:研究结果表明,AET 与气候缺水(Def)、最低气温(Tmin)或最高气温(Tmax)之间存在密切的相关性,在 Wadi Ad-Dawasir 的 R² 值为 0.70-0.67,在 Ranya 的 R² 值为 0.59-0.57,在 Abha 的 R² 值为 0.80-0.77,综合数据的 R² 值为 0.64-0.55。这些发现凸显了 AET 对温度和缺水变化的区域敏感性,为水资源管理策略提供了宝贵的启示。此外,该研究还揭示了整个地区蒸散动态的独特空间模式,这对于改善不同气候条件下的灌溉方法至关重要。与独立的 BPNN 模型(R²=0.850,RMSE=7.289)相比,部署了 11 个 EF-DI-SI 特征的 BPNN-AMM 模型性能更优(R²=0.914,RMSE=6.115)。与单独的 XGB 模型(R²=0.684,RMSE=10.584)相比,它的表现也优于具有七个混合性状的 XGB-AMM 模型(R²=0.869,RMSE=9.285)。通过改进 AET 预测的精确度,该模型阐明了干旱地区的水分平衡过程。这些见解有可能指导区域水资源管理并实现实时 AET 监测。开发的软件可在以下网址获取 (https://drive.google.com/file/d/1dPMiDzngtzDIY65xIyo8MAIVbJMudeBc)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
期刊最新文献
Ensemble machine learning (EML) based regional flood frequency analysis model development and testing for south-east Australia Streamflow dynamics of Amazonian rivers according to their hydrogeochemical heterogeneity Adaptive meta-modeling of evapotranspiration in arid agricultural regions of Saudi Arabia using climatic factors, drought indices and MODIS data Probabilistic daily runoff forecasting in high-altitude cold regions using a hybrid model combining DBO and transformer variants Modelling groundwater futures under climatic uncertainty for local policy and planning: A case of quantification of groundwater resources at sub-regional level in the Ganges basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1