Modelling groundwater futures under climatic uncertainty for local policy and planning: A case of quantification of groundwater resources at sub-regional level in the Ganges basin

IF 4.7 2区 地球科学 Q1 WATER RESOURCES Journal of Hydrology-Regional Studies Pub Date : 2025-03-17 DOI:10.1016/j.ejrh.2025.102315
Syed Adil Mizan , Alok Sikka , Shreya Chakraborty , Alison Laing , Anton Urfels , Timothy J. Krupnik
{"title":"Modelling groundwater futures under climatic uncertainty for local policy and planning: A case of quantification of groundwater resources at sub-regional level in the Ganges basin","authors":"Syed Adil Mizan ,&nbsp;Alok Sikka ,&nbsp;Shreya Chakraborty ,&nbsp;Alison Laing ,&nbsp;Anton Urfels ,&nbsp;Timothy J. Krupnik","doi":"10.1016/j.ejrh.2025.102315","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>Nalanda district, Bihar, India, a sub-tropical region, and part of middle Ganga River basin.</div></div><div><h3>Study focus</h3><div>Assessing the impacts of climate change on aquifers' seasonal replenishment is thus crucial for planning for future local food and water security. This study looks at how future groundwater levels will be affected by climate change in relation to important functioning thresholds that are typical for aquifers that replenish periodically.</div></div><div><h3>New hydrological insights for the region</h3><div>The result shows the projected groundwater levels from 2018 to 2060 using the CMIP6 global climate model, using rainfall data from three GCMs selected based on their different projected scenarios of levels of high intensity rainfall. Given the key role of low intensity rainfall in groundwater recharge, we find that incorporating rainfall intensity in groundwater models can be crucial for more robust projections. Our findings also show that higher total rainfall does not necessarily equate to higher groundwater recharge or lesser groundwater declines. Instead, the least groundwater declines were found in projections, where relatively higher total rainfall was also associated with lower high intensity rainfall periods, highlighting the need for combining and comparing varied SSPs and climate models for accurate future trends. At the sub-regional level, we find that climate change could lead to maximum groundwater loss of ∼ 0.8 km3 in 42 years in Nalanda district. Current trend analysis (2000–2018) already shows a negative annual groundwater balance. Even assuming no changes to current groundwater extraction rates, climate change will result in decreased groundwater levels and storage. The projection trends also reveal distinct short-term, medium-term, and long-term shifts which offer different policy windows for managing and governing the groundwater resources.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"59 ","pages":"Article 102315"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825001399","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study region

Nalanda district, Bihar, India, a sub-tropical region, and part of middle Ganga River basin.

Study focus

Assessing the impacts of climate change on aquifers' seasonal replenishment is thus crucial for planning for future local food and water security. This study looks at how future groundwater levels will be affected by climate change in relation to important functioning thresholds that are typical for aquifers that replenish periodically.

New hydrological insights for the region

The result shows the projected groundwater levels from 2018 to 2060 using the CMIP6 global climate model, using rainfall data from three GCMs selected based on their different projected scenarios of levels of high intensity rainfall. Given the key role of low intensity rainfall in groundwater recharge, we find that incorporating rainfall intensity in groundwater models can be crucial for more robust projections. Our findings also show that higher total rainfall does not necessarily equate to higher groundwater recharge or lesser groundwater declines. Instead, the least groundwater declines were found in projections, where relatively higher total rainfall was also associated with lower high intensity rainfall periods, highlighting the need for combining and comparing varied SSPs and climate models for accurate future trends. At the sub-regional level, we find that climate change could lead to maximum groundwater loss of ∼ 0.8 km3 in 42 years in Nalanda district. Current trend analysis (2000–2018) already shows a negative annual groundwater balance. Even assuming no changes to current groundwater extraction rates, climate change will result in decreased groundwater levels and storage. The projection trends also reveal distinct short-term, medium-term, and long-term shifts which offer different policy windows for managing and governing the groundwater resources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
期刊最新文献
Ensemble machine learning (EML) based regional flood frequency analysis model development and testing for south-east Australia Streamflow dynamics of Amazonian rivers according to their hydrogeochemical heterogeneity Adaptive meta-modeling of evapotranspiration in arid agricultural regions of Saudi Arabia using climatic factors, drought indices and MODIS data Probabilistic daily runoff forecasting in high-altitude cold regions using a hybrid model combining DBO and transformer variants Modelling groundwater futures under climatic uncertainty for local policy and planning: A case of quantification of groundwater resources at sub-regional level in the Ganges basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1