Enhancing Mass Transport Efficiency in High-Current Density PEMECs by Constructing Ti-Fiber Oriented Porous Transport Layers

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-03-18 DOI:10.1002/smll.202411817
Zhaolun Zhu, Xiaolong Liu, Rui Gao, Rongyu Yang, Muyu Ma, Hongwu Zhao, Yongli Li
{"title":"Enhancing Mass Transport Efficiency in High-Current Density PEMECs by Constructing Ti-Fiber Oriented Porous Transport Layers","authors":"Zhaolun Zhu, Xiaolong Liu, Rui Gao, Rongyu Yang, Muyu Ma, Hongwu Zhao, Yongli Li","doi":"10.1002/smll.202411817","DOIUrl":null,"url":null,"abstract":"The efficiency of proton exchange membrane electrolysis cells (PEMECs) is much influenced by the dynamics of gas/liquid two-phase flow at the anode side, especially at high current densities. Among different components of PEMECs, the anode porous transport layers (PTLs) are essential for mass transfer optimization. In this work, novel titanium fiber PTLs are designed and fabricated by an angle-selective stacking method. Three oriented PTLs with 30°, 60°, and 90° stacking angles are fabricated and compared with commercial titanium felt. X-ray micro-computed tomography results indicate that the oriented PTLs can avoid dead zones. Electrochemical tests and computational fluid dynamics simulations demonstrate that the oriented PTLs can enhance oxygen expulsion, and decrease mass transport resistances at high current densities. The PEMEC with the 30° PTL exhibits the best performance, with polarization voltage and mass transport resistance decreased by ≈67 mV and 16 mΩ cm<sup>2</sup>, respectively, compared to that of the commercial titanium felt at the current density of 3 A cm<sup>−2</sup>. The current work provides a new perspective on enhancing the mass transport efficiency of PTLs by orderly arranging fibers.","PeriodicalId":228,"journal":{"name":"Small","volume":"17 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411817","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficiency of proton exchange membrane electrolysis cells (PEMECs) is much influenced by the dynamics of gas/liquid two-phase flow at the anode side, especially at high current densities. Among different components of PEMECs, the anode porous transport layers (PTLs) are essential for mass transfer optimization. In this work, novel titanium fiber PTLs are designed and fabricated by an angle-selective stacking method. Three oriented PTLs with 30°, 60°, and 90° stacking angles are fabricated and compared with commercial titanium felt. X-ray micro-computed tomography results indicate that the oriented PTLs can avoid dead zones. Electrochemical tests and computational fluid dynamics simulations demonstrate that the oriented PTLs can enhance oxygen expulsion, and decrease mass transport resistances at high current densities. The PEMEC with the 30° PTL exhibits the best performance, with polarization voltage and mass transport resistance decreased by ≈67 mV and 16 mΩ cm2, respectively, compared to that of the commercial titanium felt at the current density of 3 A cm−2. The current work provides a new perspective on enhancing the mass transport efficiency of PTLs by orderly arranging fibers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
The Mediating Role of Accelerated Biological Aging in the Association Between Blood Metals and Cognitive Function
IF 13.6 1区 环境科学与生态学Journal of Hazardous MaterialsPub Date : 2023-10-20 DOI: 10.1016/j.jhazmat.2023.132779
Kai Li, Jingtao Wu, Quan Zhou, Jiaxin Zhao, Yanbing Li, Ming Yang, Yisen Yang, Yaoyu Hu, Jing Xu, Meiduo Zhao, Qun Xu
Association between metal exposures and periodontitis among U.S. adults: the potential mediating role of biological aging
IF 5.9 3区 环境科学与生态学Environmental Sciences EuropePub Date : 2024-06-24 DOI: 10.1186/s12302-024-00949-y
Zhida Dai, Yingyin Fu, Yuxuan Tan, Xinyuan Yu, Yixi Cao, Yian Xia, Chunxia Jing, Chunlei Zhang
The Relationship Between Central Obesity and Osteoarthritis in US Adults: The Mediating Role of Biological Aging Acceleration.
IF 6.8 4区 医学Journal of the American Nutrition AssociationPub Date : 2025-01-01 DOI: 10.1080/27697061.2024.2389398
Qiang He, Jie Mei, Chengxin Xie, Zhen Wang, Xin Sun, Mengmeng Xu
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Feasibility of Active and Durable Lattice Oxygen-Mediated Oxygen Evolution Electrocatalysts in Proton Exchange Membrane Water Electrolyzers Through d0 Metal Ion Incorporation Multi-Component Intermetallic Nanocrystals: a Promising Frontier in Advanced Electrocatalysis SERS Enhancement of CoSe2 Nanocages via Biphase Junction Strategy Alloying Strategy Balances the Adsorption-Reduction-Oxidation Process of Sulfur Species Across Wide Temperature Ranges 3D Interlaced Biomimetic Wedge Structures for Efficient Fog Harvesting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1