Tian Qiu , Lan Yang , Yupeng Zhu , Jiajia Wang , Ziyi Li , Xinlei Gao , Qi Shen , Jiumeng Zhang , Fengting Lv , Xuli Feng
{"title":"Intracellular in-situ activated enzyme/prodrug strategy based on tris(triazole)-Cu+ complex for cooperative catalytic cancer therapy","authors":"Tian Qiu , Lan Yang , Yupeng Zhu , Jiajia Wang , Ziyi Li , Xinlei Gao , Qi Shen , Jiumeng Zhang , Fengting Lv , Xuli Feng","doi":"10.1016/j.nantod.2025.102715","DOIUrl":null,"url":null,"abstract":"<div><div>Simultaneously delivering enzymes and prodrugs to the target sites is an attractive anticancer strategy. In this work, we demonstrate that triskelion lysine containing a tris(triazole)-Cu<sup>+</sup> complex (TLTC) can be employed to concurrently load horseradish peroxidase (HRP) and a prodrug (indole-3-acetic acid, IAA) within a single TLTC nanoparticle. This design utilizes Cu<sup>+</sup>-mediated HRP inhibition to prevent premature activation of IAA, addressing a critical limitation in conventional HRP/IAA systems. Due to the responsion of Cu<sup>+</sup> to H<sub>2</sub>O<sub>2</sub>, the HRP/IAA system is activated by the high-concentration H<sub>2</sub>O<sub>2</sub> in tumors to generate reactive oxygen species (ROS) for killing tumor cells. The controlled activation of the HRP/IAA system within the tumor microenvironment, mediated by Cu<sup>+</sup>/H<sub>2</sub>O<sub>2</sub> interaction, represents a significant advancement over conventional enzyme/prodrug therapies. Moreover, the self-supply of H<sub>2</sub>O<sub>2</sub> from the HRP/IAA reaction and the Fenton reaction mediated by Cu<sup>+</sup>/Cu<sup>2+</sup> redox cycling further amplifies the therapeutic effect, creating a self-sustaining cycle of ROS production. This dual mechanism of ROS generation, combining enzyme/prodrug activation and Fenton effect, significantly improves therapeutic outcomes. Thus, our triskelion-based architectures offer the opportunity to activate the enzyme/prodrug therapy (EPT) within the tumor mass while evading systemic toxicity, which represents a promising strategy for developing novel EPT based on triskelion peptide self-assembly.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"62 ","pages":"Article 102715"},"PeriodicalIF":13.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225000878","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Simultaneously delivering enzymes and prodrugs to the target sites is an attractive anticancer strategy. In this work, we demonstrate that triskelion lysine containing a tris(triazole)-Cu+ complex (TLTC) can be employed to concurrently load horseradish peroxidase (HRP) and a prodrug (indole-3-acetic acid, IAA) within a single TLTC nanoparticle. This design utilizes Cu+-mediated HRP inhibition to prevent premature activation of IAA, addressing a critical limitation in conventional HRP/IAA systems. Due to the responsion of Cu+ to H2O2, the HRP/IAA system is activated by the high-concentration H2O2 in tumors to generate reactive oxygen species (ROS) for killing tumor cells. The controlled activation of the HRP/IAA system within the tumor microenvironment, mediated by Cu+/H2O2 interaction, represents a significant advancement over conventional enzyme/prodrug therapies. Moreover, the self-supply of H2O2 from the HRP/IAA reaction and the Fenton reaction mediated by Cu+/Cu2+ redox cycling further amplifies the therapeutic effect, creating a self-sustaining cycle of ROS production. This dual mechanism of ROS generation, combining enzyme/prodrug activation and Fenton effect, significantly improves therapeutic outcomes. Thus, our triskelion-based architectures offer the opportunity to activate the enzyme/prodrug therapy (EPT) within the tumor mass while evading systemic toxicity, which represents a promising strategy for developing novel EPT based on triskelion peptide self-assembly.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.