Warpage correction for vat photopolymerization 3D printing

IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Additive manufacturing Pub Date : 2025-03-15 DOI:10.1016/j.addma.2025.104740
Taehyub Lee , Chin Siang Ng , Pei-Chen Su
{"title":"Warpage correction for vat photopolymerization 3D printing","authors":"Taehyub Lee ,&nbsp;Chin Siang Ng ,&nbsp;Pei-Chen Su","doi":"10.1016/j.addma.2025.104740","DOIUrl":null,"url":null,"abstract":"<div><div>Warp or curl distortion significantly negatively impacts print accuracy and polymer characterization. This issue is exacerbated by the inherent mechanisms of vat photopolymerization (VP) 3d printing. In the VP irradiation step, the amount of the light energy absorbed in the prior layers accumulates, leading to a difference in the degree of curing compared to a newer layer. This causes uneven shrinkage of the individual printing layers, which causes bending deformation. In this study, we corrected the warpage by ensuring uniform light energy absorption across all layers using the modified Beer-Lambert’s law. We investigated the warpage angle of both warped and corrected samples, varying by layer and part thickness. Furthermore, we conducted three-point bending tests of dynamic mechanical analysis (DMA) to verify the consistency of measurements from the corrected samples. The results show significant improvements in warpage across various printing parameters and enhanced consistency in DMA tests. Significantly, this study offers straightforward, robust guidance for setting printing parameters of newly developed resins, ensuring reliable samples to characterize polymers.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"102 ","pages":"Article 104740"},"PeriodicalIF":10.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425001046","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Warp or curl distortion significantly negatively impacts print accuracy and polymer characterization. This issue is exacerbated by the inherent mechanisms of vat photopolymerization (VP) 3d printing. In the VP irradiation step, the amount of the light energy absorbed in the prior layers accumulates, leading to a difference in the degree of curing compared to a newer layer. This causes uneven shrinkage of the individual printing layers, which causes bending deformation. In this study, we corrected the warpage by ensuring uniform light energy absorption across all layers using the modified Beer-Lambert’s law. We investigated the warpage angle of both warped and corrected samples, varying by layer and part thickness. Furthermore, we conducted three-point bending tests of dynamic mechanical analysis (DMA) to verify the consistency of measurements from the corrected samples. The results show significant improvements in warpage across various printing parameters and enhanced consistency in DMA tests. Significantly, this study offers straightforward, robust guidance for setting printing parameters of newly developed resins, ensuring reliable samples to characterize polymers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Additive manufacturing
Additive manufacturing Materials Science-General Materials Science
CiteScore
19.80
自引率
12.70%
发文量
648
审稿时长
35 days
期刊介绍: Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects. The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.
期刊最新文献
Warpage correction for vat photopolymerization 3D printing Phase-separation induced dislocation-network cellular structures in Ti-Zr-Nb-Mo-Ta high-entropy alloy processed by laser powder bed fusion Accurate inverse process optimization framework in laser directed energy deposition Powder stream characteristics of replaceable alumina and brass nozzle tips for directed energy deposition Binder jetting of spinel-based refractory materials – processing, microstructure and properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1