Tailoring of optoelectronic and trapping effects in ZnO and ZnO:Mg 1D structures for DSSC photoelectrodes

IF 3.8 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Optical Materials Pub Date : 2025-03-14 DOI:10.1016/j.optmat.2025.116943
A.I. Espinoza-Duarte , A.L. Leal-Cruz , A. Vera-Marquina , R. Gómez-Fuentes , A. Garzón-Roman , C. Zúñiga-Islas
{"title":"Tailoring of optoelectronic and trapping effects in ZnO and ZnO:Mg 1D structures for DSSC photoelectrodes","authors":"A.I. Espinoza-Duarte ,&nbsp;A.L. Leal-Cruz ,&nbsp;A. Vera-Marquina ,&nbsp;R. Gómez-Fuentes ,&nbsp;A. Garzón-Roman ,&nbsp;C. Zúñiga-Islas","doi":"10.1016/j.optmat.2025.116943","DOIUrl":null,"url":null,"abstract":"<div><div>This work is focused on tailoring optoelectronic behavior and trapping effects in ZnO and ZnO:Mg 1D nanostructures intended for DSSC photoelectrodes. ZnO and ZnO:Mg deposits on FTO-glass substrates were obtained by the CBD method at a relatively low temperature (90 °C) and short processing time (2 h). In addition, magnesium was incorporated as a dopant and varied (1 and 2 at. %) to obtain ZnO:Mg deposits with different optoelectronic and morphological characteristics. SEM results revealed the morphological evolution of ZnO deposits, transitioning from nanotubes to nanorods as the Mg increases from 0 to 2 at. %. Raman and XPS spectroscopies confirmed the formation of ZnO Wurtzite structures, as well as the incorporation of Mg ions in the ZnO host lattice. On the other hand, UV–Vis DRS revealed a significant influence of Mg ion concentration on the reflectance and optical bandgap of ZnO deposits. PL results indicated that both ZnO and ZnO:Mg deposits are rich in defects and traps induced by Mg incorporation, enabling the tailoring of optoelectronic properties. Additionally, when Mg at. % increases, UV, blue, and infrared emissions are quenched, while yellow emissions are enhanced. Lastly, a comprehensive analysis of the characteristics and behavior of resulting materials indicates that ZnO:Mg with 1 at. % of Mg exhibits the best attributes for photoelectrode, such as increased surface area, enhanced crystalline quality, and reduced recombination rates and defects. Noteworthy is that resulting materials exhibit those crucial characteristics required for DSSC photoelectrodes applications, and they could be considered for flexible electronic applications.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"162 ","pages":"Article 116943"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346725003039","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work is focused on tailoring optoelectronic behavior and trapping effects in ZnO and ZnO:Mg 1D nanostructures intended for DSSC photoelectrodes. ZnO and ZnO:Mg deposits on FTO-glass substrates were obtained by the CBD method at a relatively low temperature (90 °C) and short processing time (2 h). In addition, magnesium was incorporated as a dopant and varied (1 and 2 at. %) to obtain ZnO:Mg deposits with different optoelectronic and morphological characteristics. SEM results revealed the morphological evolution of ZnO deposits, transitioning from nanotubes to nanorods as the Mg increases from 0 to 2 at. %. Raman and XPS spectroscopies confirmed the formation of ZnO Wurtzite structures, as well as the incorporation of Mg ions in the ZnO host lattice. On the other hand, UV–Vis DRS revealed a significant influence of Mg ion concentration on the reflectance and optical bandgap of ZnO deposits. PL results indicated that both ZnO and ZnO:Mg deposits are rich in defects and traps induced by Mg incorporation, enabling the tailoring of optoelectronic properties. Additionally, when Mg at. % increases, UV, blue, and infrared emissions are quenched, while yellow emissions are enhanced. Lastly, a comprehensive analysis of the characteristics and behavior of resulting materials indicates that ZnO:Mg with 1 at. % of Mg exhibits the best attributes for photoelectrode, such as increased surface area, enhanced crystalline quality, and reduced recombination rates and defects. Noteworthy is that resulting materials exhibit those crucial characteristics required for DSSC photoelectrodes applications, and they could be considered for flexible electronic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Materials
Optical Materials 工程技术-材料科学:综合
CiteScore
6.60
自引率
12.80%
发文量
1265
审稿时长
38 days
期刊介绍: Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials. OPTICAL MATERIALS focuses on: • Optical Properties of Material Systems; • The Materials Aspects of Optical Phenomena; • The Materials Aspects of Devices and Applications. Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.
期刊最新文献
Exploring linear and nonlinear optical properties in Yb3+ and Tm3+ doped PbO–GeO2–SiO2 glasses Unveiling the quenching mechanism of metal ions using solvent-driven N, S-doped carbon quantum dots Tailoring of optoelectronic and trapping effects in ZnO and ZnO:Mg 1D structures for DSSC photoelectrodes Advanced probing of Eu2+/Eu3+ photoemitter sites in BaAl2O4:Eu scintillators by synchrotron radiation X-ray excited optical luminescence probe Novel staggered quantum well design and in-surfactant GaN buffer layer in UVA light emitting diode heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1