Arabidopsis GH3.10 conjugates jasmonates.

IF 4.2 3区 生物学 Q1 PLANT SCIENCES Plant Biology Pub Date : 2025-03-17 DOI:10.1111/plb.70001
B Ni, M Klein, B Hossbach, K Feussner, E Hornung, C Herrfurth, M Hamberg, I Feussner
{"title":"Arabidopsis GH3.10 conjugates jasmonates.","authors":"B Ni, M Klein, B Hossbach, K Feussner, E Hornung, C Herrfurth, M Hamberg, I Feussner","doi":"10.1111/plb.70001","DOIUrl":null,"url":null,"abstract":"<p><p>Jasmonates regulate plant development and defence. In angiosperms, the canonical bioactive jasmonate is jasmonoyl-isoleucine (JA-Ile), which is formed in Arabidopsis thaliana by JAR1 and GH3.10. In contrast to other jasmonate biosynthesis or perception mutants, however, gh3.10 jar1 knockout lines are still fertile. Therefore we investigated whether further jasmonates and GH3 enzymes contribute to regulation of fertility. Jasmonate levels were analysed by liquid chromatography-mass spectrometry. The substrate range of recombinant GH3.10 and related GH3 enzymes was studied using non-targeted ex vivo metabolomics with flower and leaf extracts of A. thaliana and in vitro enzyme assays. Jasmonate application experiments were performed to study their potential bioactivity. In flowers and wounded leaves of gh3.10 jar1 knockout lines JA-Ile was below the detection limit. While 12-hydroxy-JA was identified as the preferred substrate of GH3.10, no other recombinant GH3 enzymes tested were capable of JA-Ile formation. Additional JA conjugates found in wounded leaves (JA-Gln) or formed in flowers upon MeJA treatment in the absence of JA-Ile (JA-Gln, JA-Asn, JA-Glu) were identified. The aos gh3.10 jar1 was introduced as a novel tool to test for the bioactivity of JA-Gln to regulate fertility. This study found JAR1 and GH3.10 are the only contributors to JA-Ile biosynthesis in Arabidopsis and identified a number of JA conjugates as potential bioactive jasmonates acting in the absence of JA-Ile. However, their contribution in regulating fertility is yet to be conclusively determined.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/plb.70001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Jasmonates regulate plant development and defence. In angiosperms, the canonical bioactive jasmonate is jasmonoyl-isoleucine (JA-Ile), which is formed in Arabidopsis thaliana by JAR1 and GH3.10. In contrast to other jasmonate biosynthesis or perception mutants, however, gh3.10 jar1 knockout lines are still fertile. Therefore we investigated whether further jasmonates and GH3 enzymes contribute to regulation of fertility. Jasmonate levels were analysed by liquid chromatography-mass spectrometry. The substrate range of recombinant GH3.10 and related GH3 enzymes was studied using non-targeted ex vivo metabolomics with flower and leaf extracts of A. thaliana and in vitro enzyme assays. Jasmonate application experiments were performed to study their potential bioactivity. In flowers and wounded leaves of gh3.10 jar1 knockout lines JA-Ile was below the detection limit. While 12-hydroxy-JA was identified as the preferred substrate of GH3.10, no other recombinant GH3 enzymes tested were capable of JA-Ile formation. Additional JA conjugates found in wounded leaves (JA-Gln) or formed in flowers upon MeJA treatment in the absence of JA-Ile (JA-Gln, JA-Asn, JA-Glu) were identified. The aos gh3.10 jar1 was introduced as a novel tool to test for the bioactivity of JA-Gln to regulate fertility. This study found JAR1 and GH3.10 are the only contributors to JA-Ile biosynthesis in Arabidopsis and identified a number of JA conjugates as potential bioactive jasmonates acting in the absence of JA-Ile. However, their contribution in regulating fertility is yet to be conclusively determined.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biology
Plant Biology 生物-植物科学
CiteScore
8.20
自引率
2.60%
发文量
109
审稿时长
3 months
期刊介绍: Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology. Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.
期刊最新文献
Chemical, morphological, and genetic characterization of the floral scent and scent-releasing structures of Gynandropsis gynandra (Cleomaceae, Brassicales). Sinolobotheca gen. nov., a Late Devonian ovule without cupule and its implication for integument functions. Arabidopsis GH3.10 conjugates jasmonates. Drought affects Fe deficiency-induced responses in a purple durum wheat (Triticum turgidum subsp. durum) genotype. Green, variegated, and albino Cremastra variabilis provide insight into mycoheterotrophic evolution associated with wood-decaying fungi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1