G Quagliata, M D G Molina, G Mannino, E Coppa, M N Saidi, S Palombieri, F Sestili, G Vigani, S Astolfi
{"title":"Drought affects Fe deficiency-induced responses in a purple durum wheat (Triticum turgidum subsp. durum) genotype.","authors":"G Quagliata, M D G Molina, G Mannino, E Coppa, M N Saidi, S Palombieri, F Sestili, G Vigani, S Astolfi","doi":"10.1111/plb.70012","DOIUrl":null,"url":null,"abstract":"<p><p>Iron (Fe) is essential for plants and humans, with over 2 billion people suffering deficiency disorders because most plant foods, including cereals, are low in Fe. Durum wheat, a staple crop in Mediterranean regions, is facing increased droughts, which reduce plant yield and ability to acquire and use Fe. Therefore, understanding mechanisms underlying Fe acquisition and accumulation in durum wheat under drought is essential for both agronomic and nutritional purposes. Here, a durum wheat (Triticum turgidum subsp. durum) genotype with a purple grain pericarp was grown hydroponically under adequate (80 μM) or limited (10 μM) Fe, with or without water stress (induced with 10% PEG 6000) for 6 days. Fe accumulation decreased under Fe deficiency and drought, with the highest phytosiderophore (PS) release in Fe-deficient plants. Interestingly, despite adequate Fe availability, drought inhibited Fe accumulation in roots. This response was accompanied by increased release of PS from roots, although the increase was less than that observed with single or combined Fe deficiency. Both TdIRT1 and TdYS15 were upregulated by Fe deficiency but downregulated by drought and the combined stress. Drought stress and Fe deficiency led to increased ABA production, being 250-fold higher with respect to controls. TdIRT1 downregulation in plants exposed to the combined stress suggests a trade-off between water and Fe stress responses. Our findings demonstrate that the response to combined stress differs from, and is rarely additive to, the response to a single stressor, reinforcing the complexity of plant adaptation to combined environmental stresses.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/plb.70012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Iron (Fe) is essential for plants and humans, with over 2 billion people suffering deficiency disorders because most plant foods, including cereals, are low in Fe. Durum wheat, a staple crop in Mediterranean regions, is facing increased droughts, which reduce plant yield and ability to acquire and use Fe. Therefore, understanding mechanisms underlying Fe acquisition and accumulation in durum wheat under drought is essential for both agronomic and nutritional purposes. Here, a durum wheat (Triticum turgidum subsp. durum) genotype with a purple grain pericarp was grown hydroponically under adequate (80 μM) or limited (10 μM) Fe, with or without water stress (induced with 10% PEG 6000) for 6 days. Fe accumulation decreased under Fe deficiency and drought, with the highest phytosiderophore (PS) release in Fe-deficient plants. Interestingly, despite adequate Fe availability, drought inhibited Fe accumulation in roots. This response was accompanied by increased release of PS from roots, although the increase was less than that observed with single or combined Fe deficiency. Both TdIRT1 and TdYS15 were upregulated by Fe deficiency but downregulated by drought and the combined stress. Drought stress and Fe deficiency led to increased ABA production, being 250-fold higher with respect to controls. TdIRT1 downregulation in plants exposed to the combined stress suggests a trade-off between water and Fe stress responses. Our findings demonstrate that the response to combined stress differs from, and is rarely additive to, the response to a single stressor, reinforcing the complexity of plant adaptation to combined environmental stresses.
期刊介绍:
Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology.
Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.