Green, variegated, and albino Cremastra variabilis provide insight into mycoheterotrophic evolution associated with wood-decaying fungi.

IF 4.2 3区 生物学 Q1 PLANT SCIENCES Plant Biology Pub Date : 2025-03-17 DOI:10.1111/plb.70014
K Suetsugu, H Okada
{"title":"Green, variegated, and albino Cremastra variabilis provide insight into mycoheterotrophic evolution associated with wood-decaying fungi.","authors":"K Suetsugu, H Okada","doi":"10.1111/plb.70014","DOIUrl":null,"url":null,"abstract":"<p><p>With approximately 31,000 species, orchids begin life as mycoheterotrophs, relying on fungi to meet their carbon demands. Notably, some green orchids retain the ability to acquire carbon through fungal associations (partial mycoheterotrophy) and occasionally produce albino or, more rarely, variegated phenotypes. A linear relationship has been observed between leaf chlorophyll content and dependence on fungal-derived carbon, particularly in orchids associated with ectomycorrhizal (ECM) fungi, but whether such plasticity is similarly robust among orchids associated with non-ECM fungi remains underexplored. Here, we focused on the green, variegated, and albino forms of Cremastra variabilis, which likely lack ECM associations, to investigate (i) whether the degree of mycoheterotrophy, indicated by <sup>13</sup>C enrichment, correlates with chlorophyll content, and (ii) whether nutritional shifts align with changes in plant structure and mycorrhizal communities. Our results show that rhizoctonia fungi were dominant in green individuals with high chlorophyll levels and lacking coralloid rhizomes, whereas albino and most variegated individuals possessing coralloid rhizomes primarily associate with Psathyrellaceae fungi. Chlorophyll content and carbon stable isotope abundances were negatively correlated, indicating a gradient of increasing mycoheterotrophy from green to albino forms in individuals with coralloid rhizomes. In conclusion, C. variabilis maintains a flexible balance between photosynthesis and mycoheterotrophy, likely shaped by its subterranean morphology and fungal associations, with wood-decaying Psathyrellaceae fungi providing greater support for mycoheterotrophic nutrition than rhizoctonia fungi.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/plb.70014","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With approximately 31,000 species, orchids begin life as mycoheterotrophs, relying on fungi to meet their carbon demands. Notably, some green orchids retain the ability to acquire carbon through fungal associations (partial mycoheterotrophy) and occasionally produce albino or, more rarely, variegated phenotypes. A linear relationship has been observed between leaf chlorophyll content and dependence on fungal-derived carbon, particularly in orchids associated with ectomycorrhizal (ECM) fungi, but whether such plasticity is similarly robust among orchids associated with non-ECM fungi remains underexplored. Here, we focused on the green, variegated, and albino forms of Cremastra variabilis, which likely lack ECM associations, to investigate (i) whether the degree of mycoheterotrophy, indicated by 13C enrichment, correlates with chlorophyll content, and (ii) whether nutritional shifts align with changes in plant structure and mycorrhizal communities. Our results show that rhizoctonia fungi were dominant in green individuals with high chlorophyll levels and lacking coralloid rhizomes, whereas albino and most variegated individuals possessing coralloid rhizomes primarily associate with Psathyrellaceae fungi. Chlorophyll content and carbon stable isotope abundances were negatively correlated, indicating a gradient of increasing mycoheterotrophy from green to albino forms in individuals with coralloid rhizomes. In conclusion, C. variabilis maintains a flexible balance between photosynthesis and mycoheterotrophy, likely shaped by its subterranean morphology and fungal associations, with wood-decaying Psathyrellaceae fungi providing greater support for mycoheterotrophic nutrition than rhizoctonia fungi.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biology
Plant Biology 生物-植物科学
CiteScore
8.20
自引率
2.60%
发文量
109
审稿时长
3 months
期刊介绍: Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology. Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.
期刊最新文献
Chemical, morphological, and genetic characterization of the floral scent and scent-releasing structures of Gynandropsis gynandra (Cleomaceae, Brassicales). Sinolobotheca gen. nov., a Late Devonian ovule without cupule and its implication for integument functions. Arabidopsis GH3.10 conjugates jasmonates. Drought affects Fe deficiency-induced responses in a purple durum wheat (Triticum turgidum subsp. durum) genotype. Green, variegated, and albino Cremastra variabilis provide insight into mycoheterotrophic evolution associated with wood-decaying fungi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1