Róbert Stollmayer, Selda Güven, Christian Marcel Heidt, Kai Schlamp, Pál Novák Kaposi, Oyunbileg von Stackelberg, Hans-Ulrich Kauczor, Miriam Klauss, Philipp Mayer
{"title":"LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learning.","authors":"Róbert Stollmayer, Selda Güven, Christian Marcel Heidt, Kai Schlamp, Pál Novák Kaposi, Oyunbileg von Stackelberg, Hans-Ulrich Kauczor, Miriam Klauss, Philipp Mayer","doi":"10.1186/s40644-025-00844-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC) is often diagnosed using gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI). Standardized reporting according to the Liver Imaging Reporting and Data System (LI-RADS) can improve Gd-MRI interpretation but is rather complex and time-consuming. These limitations could potentially be alleviated using recent deep learning-based segmentation and classification methods such as nnU-Net. The study aims to create and evaluate an automatic segmentation model for HCC risk assessment, according to LI-RADS v2018 using nnU-Net.</p><p><strong>Methods: </strong>For this single-center retrospective study, 602 patients at risk for HCC were included, who had dynamic EOB-MRI examinations between 05/2005 and 09/2022, containing ≥ LR-3 lesion(s). Manual lesion segmentations in semantic segmentation masks as LR-3, LR-4, LR-5 or LR-M served as ground truth. A set of U-Net models with 14 input channels was trained using the nnU-Net framework for automatic segmentation. Lesion detection, LI-RADS classification, and instance segmentation metrics were calculated by post-processing the semantic segmentation outputs of the final model ensemble. For the external evaluation, a modified version of the LiverHccSeg dataset was used.</p><p><strong>Results: </strong>The final training/internal test/external test cohorts included 383/219/16 patients. In the three cohorts, LI-RADS lesions (≥ LR-3 and LR-M) ≥ 10 mm were detected with sensitivities of 0.41-0.85/0.40-0.90/0.83 (LR-5: 0.85/0.90/0.83) and positive predictive values of 0.70-0.94/0.67-0.88/0.90 (LR-5: 0.94/0.88/0.90). F1 scores for LI-RADS classification of detected lesions ranged between 0.48-0.69/0.47-0.74/0.84 (LR-5: 0.69/0.74/0.84). Median per lesion Sørensen-Dice coefficients were between 0.61-0.74/0.52-0.77/0.84 (LR-5: 0.74/0.77/0.84).</p><p><strong>Conclusion: </strong>Deep learning-based HCC risk assessment according to LI-RADS can be implemented as automatically generated tumor risk maps using out-of-the-box image segmentation tools with high detection performance for LR-5 lesions. Before translation into clinical practice, further improvements in automatic LI-RADS classification, for example through large multi-center studies, would be desirable.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"25 1","pages":"36"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-025-00844-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hepatocellular carcinoma (HCC) is often diagnosed using gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI). Standardized reporting according to the Liver Imaging Reporting and Data System (LI-RADS) can improve Gd-MRI interpretation but is rather complex and time-consuming. These limitations could potentially be alleviated using recent deep learning-based segmentation and classification methods such as nnU-Net. The study aims to create and evaluate an automatic segmentation model for HCC risk assessment, according to LI-RADS v2018 using nnU-Net.
Methods: For this single-center retrospective study, 602 patients at risk for HCC were included, who had dynamic EOB-MRI examinations between 05/2005 and 09/2022, containing ≥ LR-3 lesion(s). Manual lesion segmentations in semantic segmentation masks as LR-3, LR-4, LR-5 or LR-M served as ground truth. A set of U-Net models with 14 input channels was trained using the nnU-Net framework for automatic segmentation. Lesion detection, LI-RADS classification, and instance segmentation metrics were calculated by post-processing the semantic segmentation outputs of the final model ensemble. For the external evaluation, a modified version of the LiverHccSeg dataset was used.
Results: The final training/internal test/external test cohorts included 383/219/16 patients. In the three cohorts, LI-RADS lesions (≥ LR-3 and LR-M) ≥ 10 mm were detected with sensitivities of 0.41-0.85/0.40-0.90/0.83 (LR-5: 0.85/0.90/0.83) and positive predictive values of 0.70-0.94/0.67-0.88/0.90 (LR-5: 0.94/0.88/0.90). F1 scores for LI-RADS classification of detected lesions ranged between 0.48-0.69/0.47-0.74/0.84 (LR-5: 0.69/0.74/0.84). Median per lesion Sørensen-Dice coefficients were between 0.61-0.74/0.52-0.77/0.84 (LR-5: 0.74/0.77/0.84).
Conclusion: Deep learning-based HCC risk assessment according to LI-RADS can be implemented as automatically generated tumor risk maps using out-of-the-box image segmentation tools with high detection performance for LR-5 lesions. Before translation into clinical practice, further improvements in automatic LI-RADS classification, for example through large multi-center studies, would be desirable.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.