{"title":"XRadNet: A Radiomics-Guided Breast Cancer Molecular Subtype Prediction Network with a Radiomics Explanation.","authors":"Yinhao Liang, Wenjie Tang, Jianjun Zhang, Ting Wang, Wing W Y Ng, Siyi Chen, Kuiming Jiang, Xinhua Wei, Xinqing Jiang, Yuan Guo","doi":"10.1109/JBHI.2025.3552072","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we propose a radiomics-guided neural network, XRadNet, for breast cancer molecular subtype prediction. XRadNet is a two-head neural network, with one for predicting molecular subtypes and the other for approximating radiomic features. In addition, a training scheme with radiomics guidance is proposed to improve performance. First, we conduct a series of experiments to test the radiomic feature learning capacity of different neural networks, which determines the backbone of XRadNet. Moreover, significant radiomic features are also determined according to radiomics and prior knowledge. XRadNet is subsequently pretrained in a self-supervised manner. The pretraining uses synthetic samples to train the backbone and radiomic feature regression head. This mitigates the impact of an insufficient number of samples. Finally, XRadNet is fine-tuned with a downstream real-world dataset by enabling all heads. Furthermore, a logistic regression is built with radiomic features and learned features, which provides a new way to interpreting the trained model with concepts familiar to radiologists. The experimental results show that XRadNet effectively predicts the four molecular subtypes of breast cancer. These results also demonstrate that the proposed training scheme yields better or competitive performance than those models pretrained on ImageNet or medical datasets.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3552072","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose a radiomics-guided neural network, XRadNet, for breast cancer molecular subtype prediction. XRadNet is a two-head neural network, with one for predicting molecular subtypes and the other for approximating radiomic features. In addition, a training scheme with radiomics guidance is proposed to improve performance. First, we conduct a series of experiments to test the radiomic feature learning capacity of different neural networks, which determines the backbone of XRadNet. Moreover, significant radiomic features are also determined according to radiomics and prior knowledge. XRadNet is subsequently pretrained in a self-supervised manner. The pretraining uses synthetic samples to train the backbone and radiomic feature regression head. This mitigates the impact of an insufficient number of samples. Finally, XRadNet is fine-tuned with a downstream real-world dataset by enabling all heads. Furthermore, a logistic regression is built with radiomic features and learned features, which provides a new way to interpreting the trained model with concepts familiar to radiologists. The experimental results show that XRadNet effectively predicts the four molecular subtypes of breast cancer. These results also demonstrate that the proposed training scheme yields better or competitive performance than those models pretrained on ImageNet or medical datasets.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.