Investigating the Evolution and Features of Regeneration Using Cnidarians.

IF 2.2 3区 生物学 Q1 ZOOLOGY Integrative and Comparative Biology Pub Date : 2025-03-17 DOI:10.1093/icb/icaf006
Aide Macias-Muñoz
{"title":"Investigating the Evolution and Features of Regeneration Using Cnidarians.","authors":"Aide Macias-Muñoz","doi":"10.1093/icb/icaf006","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to regenerate can greatly vary between animal groups and cell types. Some of the outstanding questions in the field of regeneration include: 1) how has regeneration evolved? and 2) what features underlie differences in regeneration potential between animals? Whether regeneration evolved once and diversified or if it evolved multiple times independently by co-opting similar pathways remains unknown. Current research seeks to identify conserved cellular and molecular features that allow for regeneration. However, comparisons between distantly related regenerating animals have revealed a large amount of diversity. In this perspective, I review discussions on the mechanisms, cell types, and genes underlying regeneration. I propose using Cnidaria as a group in which to investigate the evolution of regeneration. As the sister group to Bilateria with notable regenerative capacity, studies in Cnidaria offer insights into the evolutionary history and conservation of regenerative mechanisms. I then highlight how genome-wide studies, single-cell genomics, multi-omics, and gene editing can be used to identify cell types and unknown features of regeneration. Applying these approaches across organisms will give insight into the cell and molecular features that allow for regeneration competency and may be used to alter an organism's regeneration potential.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icaf006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to regenerate can greatly vary between animal groups and cell types. Some of the outstanding questions in the field of regeneration include: 1) how has regeneration evolved? and 2) what features underlie differences in regeneration potential between animals? Whether regeneration evolved once and diversified or if it evolved multiple times independently by co-opting similar pathways remains unknown. Current research seeks to identify conserved cellular and molecular features that allow for regeneration. However, comparisons between distantly related regenerating animals have revealed a large amount of diversity. In this perspective, I review discussions on the mechanisms, cell types, and genes underlying regeneration. I propose using Cnidaria as a group in which to investigate the evolution of regeneration. As the sister group to Bilateria with notable regenerative capacity, studies in Cnidaria offer insights into the evolutionary history and conservation of regenerative mechanisms. I then highlight how genome-wide studies, single-cell genomics, multi-omics, and gene editing can be used to identify cell types and unknown features of regeneration. Applying these approaches across organisms will give insight into the cell and molecular features that allow for regeneration competency and may be used to alter an organism's regeneration potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Ground-state properties of the antiferromagnetic potts model in an external field
IF 2.6 3区 物理与天体物理Physics Letters APub Date : 1983-02-07 DOI: 10.1016/0375-9601(83)90478-4
Loïc Turban
Ground states for the ising model with an external field on the Cayley tree
IF 0 Uzbek Mathematical JournalPub Date : 2018-09-21 DOI: 10.29229/UZMJ.2018-3-15
M. Rahmatullaev, M. R. Abdusalomova, M. A. Rasulova
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
期刊最新文献
The Aquatic Microbial Environment Shapes the Tadpole Microbiome and Antipredator Behavior. Investigating the Evolution and Features of Regeneration Using Cnidarians. Microbial Depletion is Associated with Slower Cnidarian Regeneration. Freshwater salinization leads to sluggish, bloated frogs and small, cramped embryos but adaptive countergradient variation in eggs. The Impact of Light Availability on the Functional Traits of Quercus Robur L. and Acer Platanoides L. First-Year Seedlings by Direct and Indirect Methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1