{"title":"Mother knows worst? Fungal infection enhances corn flavonoid of wogonin to inhibit Conogethes punctiferalis larval growth","authors":"Qian Li, Jiayu Li, Kaining Wu, Yue Tong, Aihuan Zhang, Yanli Du","doi":"10.1111/pbi.70051","DOIUrl":null,"url":null,"abstract":"Pathogen infection in host plants can alter the attraction and adaptability of herbivorous insects. Female adult insects often exhibit selective behaviours based on their environmental experiences, enabling their offspring to avoid adverse conditions and ensuring healthy growth and development. However, comprehensive studies integrating both the perspectives of offspring fitness and host plant to validate the selective significance of such parental ‘Mother knows worst’ experiences remain limited. Building on our previous findings that female <i>Conogethes punctiferalis</i> (Yellow peach moth, YPM) adults exhibit oviposition avoidance behaviour towards corn infected with <i>Trichoderma asperellum</i>, we further confirmed that corn infected by <i>T. asperellum</i> significantly inhibits the growth and development of YPM larvae. Feeding on infected corn decreases larval gut microbiota diversity, core microbiota abundance and led to differential expression of key genes in juvenile hormone metabolic pathway. Moreover, the content of flavonoid wogonin, a secondary metabolite, was significantly increased in infected corn. In vitro feeding experiments revealed that wogonin negatively impacts YPM larval growth by causing the juvenile hormone accumulation and suppressing the abundance of core gut microbial strains. This study validates the adaptive significance of parental empiricism from the perspective of offspring, while further elucidating the mechanisms by which microbial-mediated plant resistance against insects, as well as for exploring and utilizing effective biocontrol resources against YPMs.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"33 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70051","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pathogen infection in host plants can alter the attraction and adaptability of herbivorous insects. Female adult insects often exhibit selective behaviours based on their environmental experiences, enabling their offspring to avoid adverse conditions and ensuring healthy growth and development. However, comprehensive studies integrating both the perspectives of offspring fitness and host plant to validate the selective significance of such parental ‘Mother knows worst’ experiences remain limited. Building on our previous findings that female Conogethes punctiferalis (Yellow peach moth, YPM) adults exhibit oviposition avoidance behaviour towards corn infected with Trichoderma asperellum, we further confirmed that corn infected by T. asperellum significantly inhibits the growth and development of YPM larvae. Feeding on infected corn decreases larval gut microbiota diversity, core microbiota abundance and led to differential expression of key genes in juvenile hormone metabolic pathway. Moreover, the content of flavonoid wogonin, a secondary metabolite, was significantly increased in infected corn. In vitro feeding experiments revealed that wogonin negatively impacts YPM larval growth by causing the juvenile hormone accumulation and suppressing the abundance of core gut microbial strains. This study validates the adaptive significance of parental empiricism from the perspective of offspring, while further elucidating the mechanisms by which microbial-mediated plant resistance against insects, as well as for exploring and utilizing effective biocontrol resources against YPMs.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.