Efficient clonal seeds sorting for apomictic hybrid rice using a pollen-specific gene switch system

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2025-03-19 DOI:10.1111/pbi.70031
Yijie Zhan, Yumei Xia, Yao Wang, Siqing Liu, XiuLi Zhang, Shuo Xiong, Qiming Lv, Mengliang Cao
{"title":"Efficient clonal seeds sorting for apomictic hybrid rice using a pollen-specific gene switch system","authors":"Yijie Zhan, Yumei Xia, Yao Wang, Siqing Liu, XiuLi Zhang, Shuo Xiong, Qiming Lv, Mengliang Cao","doi":"10.1111/pbi.70031","DOIUrl":null,"url":null,"abstract":"Significant progress in apomictic hybrid rice development faces challenges like achieving high induction rates and seed-setting efficiencies, and distinguishing clonal from zygotic embryos. To address the challenge of selecting clonal seeds, we developed a dual-fluorescence labelling gene switch system using the recombinase <i>Cre/LoxP + FRT</i>. Initially, this system was tested in callus tissue under a constitutive promoter; then, we replaced the promoter with a pollen-specific one to develop the pollen-specific gene switch (PSGS) system. The effectiveness of PSGS in rice pollen was subsequently validated. After confirming its functionality, we co-transformed the PSGS vectors with apomixis vectors in hybrid rice Yongyou 2640 (YE) and Yongyou 4949 (YS) using <i>Agrobacterium</i>-mediated transformation. Finally, we identified 18 <i>MiMe</i> mutants carrying the PSGS; the progeny of 16 lines were all red fluorescence seeds (zygotic embryo). Surprisingly, line L47-4 and L151-1 yielded 418 (<i>n</i> = 418) and 218 (<i>n</i> = 1279) non-fluorescent seeds in the T<sub>1</sub> generation, respectively. The ploidy detection of non-fluorescent seeds showed that 57 (<i>n</i> = 68) and 64 (<i>n</i> = 72) were diploid in Line L47-4 and L151-1, individually. This phenomenon was reproducible in the T<sub>2</sub> generation; 97 (<i>n</i> = 121) and 164 (<i>n</i> = 187) non-fluorescent seeds were diploid from line L47-4 and L151-1, respectively. This study demonstrates the ability of PSGS to distinguish between clonal seeds and zygotic seeds, with a sorting accuracy rate ranging from 80.2% to 88.9%, which is essential for improving clonal seed purity and advancing apomixis in rice cultivation.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"200 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70031","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Significant progress in apomictic hybrid rice development faces challenges like achieving high induction rates and seed-setting efficiencies, and distinguishing clonal from zygotic embryos. To address the challenge of selecting clonal seeds, we developed a dual-fluorescence labelling gene switch system using the recombinase Cre/LoxP + FRT. Initially, this system was tested in callus tissue under a constitutive promoter; then, we replaced the promoter with a pollen-specific one to develop the pollen-specific gene switch (PSGS) system. The effectiveness of PSGS in rice pollen was subsequently validated. After confirming its functionality, we co-transformed the PSGS vectors with apomixis vectors in hybrid rice Yongyou 2640 (YE) and Yongyou 4949 (YS) using Agrobacterium-mediated transformation. Finally, we identified 18 MiMe mutants carrying the PSGS; the progeny of 16 lines were all red fluorescence seeds (zygotic embryo). Surprisingly, line L47-4 and L151-1 yielded 418 (n = 418) and 218 (n = 1279) non-fluorescent seeds in the T1 generation, respectively. The ploidy detection of non-fluorescent seeds showed that 57 (n = 68) and 64 (n = 72) were diploid in Line L47-4 and L151-1, individually. This phenomenon was reproducible in the T2 generation; 97 (n = 121) and 164 (n = 187) non-fluorescent seeds were diploid from line L47-4 and L151-1, respectively. This study demonstrates the ability of PSGS to distinguish between clonal seeds and zygotic seeds, with a sorting accuracy rate ranging from 80.2% to 88.9%, which is essential for improving clonal seed purity and advancing apomixis in rice cultivation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
Dissecting the molecular basis of variability for flowering time in Camelina sativa Mother knows worst? Fungal infection enhances corn flavonoid of wogonin to inhibit Conogethes punctiferalis larval growth Ecotype-specific phenolic acid accumulation and root softness in Salvia miltiorrhiza are driven by environmental and genetic factors Efficient clonal seeds sorting for apomictic hybrid rice using a pollen-specific gene switch system Molecular characterization and structural basis of a promiscuous glycosyltransferase for β-(1,6) oligoglucoside chain glycosides biosynthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1