Yijie Zhan, Yumei Xia, Yao Wang, Siqing Liu, XiuLi Zhang, Shuo Xiong, Qiming Lv, Mengliang Cao
{"title":"Efficient clonal seeds sorting for apomictic hybrid rice using a pollen-specific gene switch system","authors":"Yijie Zhan, Yumei Xia, Yao Wang, Siqing Liu, XiuLi Zhang, Shuo Xiong, Qiming Lv, Mengliang Cao","doi":"10.1111/pbi.70031","DOIUrl":null,"url":null,"abstract":"Significant progress in apomictic hybrid rice development faces challenges like achieving high induction rates and seed-setting efficiencies, and distinguishing clonal from zygotic embryos. To address the challenge of selecting clonal seeds, we developed a dual-fluorescence labelling gene switch system using the recombinase <i>Cre/LoxP + FRT</i>. Initially, this system was tested in callus tissue under a constitutive promoter; then, we replaced the promoter with a pollen-specific one to develop the pollen-specific gene switch (PSGS) system. The effectiveness of PSGS in rice pollen was subsequently validated. After confirming its functionality, we co-transformed the PSGS vectors with apomixis vectors in hybrid rice Yongyou 2640 (YE) and Yongyou 4949 (YS) using <i>Agrobacterium</i>-mediated transformation. Finally, we identified 18 <i>MiMe</i> mutants carrying the PSGS; the progeny of 16 lines were all red fluorescence seeds (zygotic embryo). Surprisingly, line L47-4 and L151-1 yielded 418 (<i>n</i> = 418) and 218 (<i>n</i> = 1279) non-fluorescent seeds in the T<sub>1</sub> generation, respectively. The ploidy detection of non-fluorescent seeds showed that 57 (<i>n</i> = 68) and 64 (<i>n</i> = 72) were diploid in Line L47-4 and L151-1, individually. This phenomenon was reproducible in the T<sub>2</sub> generation; 97 (<i>n</i> = 121) and 164 (<i>n</i> = 187) non-fluorescent seeds were diploid from line L47-4 and L151-1, respectively. This study demonstrates the ability of PSGS to distinguish between clonal seeds and zygotic seeds, with a sorting accuracy rate ranging from 80.2% to 88.9%, which is essential for improving clonal seed purity and advancing apomixis in rice cultivation.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"200 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70031","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Significant progress in apomictic hybrid rice development faces challenges like achieving high induction rates and seed-setting efficiencies, and distinguishing clonal from zygotic embryos. To address the challenge of selecting clonal seeds, we developed a dual-fluorescence labelling gene switch system using the recombinase Cre/LoxP + FRT. Initially, this system was tested in callus tissue under a constitutive promoter; then, we replaced the promoter with a pollen-specific one to develop the pollen-specific gene switch (PSGS) system. The effectiveness of PSGS in rice pollen was subsequently validated. After confirming its functionality, we co-transformed the PSGS vectors with apomixis vectors in hybrid rice Yongyou 2640 (YE) and Yongyou 4949 (YS) using Agrobacterium-mediated transformation. Finally, we identified 18 MiMe mutants carrying the PSGS; the progeny of 16 lines were all red fluorescence seeds (zygotic embryo). Surprisingly, line L47-4 and L151-1 yielded 418 (n = 418) and 218 (n = 1279) non-fluorescent seeds in the T1 generation, respectively. The ploidy detection of non-fluorescent seeds showed that 57 (n = 68) and 64 (n = 72) were diploid in Line L47-4 and L151-1, individually. This phenomenon was reproducible in the T2 generation; 97 (n = 121) and 164 (n = 187) non-fluorescent seeds were diploid from line L47-4 and L151-1, respectively. This study demonstrates the ability of PSGS to distinguish between clonal seeds and zygotic seeds, with a sorting accuracy rate ranging from 80.2% to 88.9%, which is essential for improving clonal seed purity and advancing apomixis in rice cultivation.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.