Dissecting the molecular basis of variability for flowering time in Camelina sativa

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2025-03-20 DOI:10.1111/pbi.70049
Liyong Zhang, Venkatesh Bollina, Peng Gao, Isobel A. P. Parkin
{"title":"Dissecting the molecular basis of variability for flowering time in Camelina sativa","authors":"Liyong Zhang, Venkatesh Bollina, Peng Gao, Isobel A. P. Parkin","doi":"10.1111/pbi.70049","DOIUrl":null,"url":null,"abstract":"<i>Camelina sativa</i> is an important polyploid oilseed crop with multiple favourable agronomic traits. Capturing the leaf transcriptome of 48 accessions of <i>C. sativa</i> suggests allelic variation for gene expression levels and notably sub-genome dominance, both of which could provide opportunities for crop improvement. Flowering time (FT) is a crucial factor affecting the overall yield of crops. However, our understanding of the molecular mechanisms underlying FT regulation in <i>C. sativa</i> are still limited, partly due to its complex allohexaploid genome. In this study, weighted gene co-expression network analysis (WGCNA), expression quantitative trait loci (eQTL) analysis and transcriptome-wide association study (TWAS) were employed to explore the FT diversity among 48 <i>C. sativa</i> accessions and dissect the underlying molecular basis. Our results revealed a FT-related co-expressed gene module highly enriched with <i>SOC1</i> and <i>SOC1</i>-like genes and identified 10 significant FT-associated single nucleotide polymorphisms (SNPs) defining three haplotype groups; thus providing a molecular basis for future genetic improvements in <i>C. sativa</i> breeding.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"14 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70049","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Camelina sativa is an important polyploid oilseed crop with multiple favourable agronomic traits. Capturing the leaf transcriptome of 48 accessions of C. sativa suggests allelic variation for gene expression levels and notably sub-genome dominance, both of which could provide opportunities for crop improvement. Flowering time (FT) is a crucial factor affecting the overall yield of crops. However, our understanding of the molecular mechanisms underlying FT regulation in C. sativa are still limited, partly due to its complex allohexaploid genome. In this study, weighted gene co-expression network analysis (WGCNA), expression quantitative trait loci (eQTL) analysis and transcriptome-wide association study (TWAS) were employed to explore the FT diversity among 48 C. sativa accessions and dissect the underlying molecular basis. Our results revealed a FT-related co-expressed gene module highly enriched with SOC1 and SOC1-like genes and identified 10 significant FT-associated single nucleotide polymorphisms (SNPs) defining three haplotype groups; thus providing a molecular basis for future genetic improvements in C. sativa breeding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Transformer-based descriptors with fine-grained region supervisions for visual place recognition
IF 8.8 1区 计算机科学Knowledge-Based SystemsPub Date : 2023-09-19 DOI: 10.1016/j.knosys.2023.110993
Yuwei Wang, Yuanying Qiu, Peitao Cheng, Junyu Zhang
Attention-based Pyramid Aggregation Network for Visual Place Recognition
IF 0 Proceedings of the 26th ACM international conference on MultimediaPub Date : 2018-08-01 DOI: 10.1145/3240508.3240525
Yingying Zhu, Jiong Wang, Lingxi Xie, Liang Zheng
CSPFormer: A cross-spatial pyramid transformer for visual place recognition
IF 6 2区 计算机科学NeurocomputingPub Date : 2024-03-05 DOI: 10.1016/j.neucom.2024.127472
Zhenyu Li , Pengjie Xu
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
Teach plants to fish based on CRISPR‐Cas system self‐evolution Mitochondrial gene editing and allotopic expression unveil the role of orf125 in the induction of male fertility in some Solanum spp. hybrids and in the evolution of the common potato Dissecting the molecular basis of variability for flowering time in Camelina sativa Developing glycosylase‐based T‐to‐G and C‐to‐K base editors in rice Advancements in hybrid rice production: improvements in male sterility and synthetic apomixis for sustainable agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1