Development of bionanocomposite packaging films based on lignin nanoencapsulated anthocyanins extracted from agro-waste for enhancing the post-harvest shelf life of tomatoes†

Maninder Meenu, Anil Kumar Pujari, Seema Kirar, Mansi, Aniket Thakur, Monika Garg and Jayeeta Bhaumik
{"title":"Development of bionanocomposite packaging films based on lignin nanoencapsulated anthocyanins extracted from agro-waste for enhancing the post-harvest shelf life of tomatoes†","authors":"Maninder Meenu, Anil Kumar Pujari, Seema Kirar, Mansi, Aniket Thakur, Monika Garg and Jayeeta Bhaumik","doi":"10.1039/D4FB00342J","DOIUrl":null,"url":null,"abstract":"<p >Anthocyanin, a natural pigment from the flavonoid family, can be useful as a natural colorant in the packaging industry. Due to the sensitivity to light, pH and temperature of anthocyanin, its applications are restricted. In the present study, anthocyanins extracted from black wheat bran (WB), black plum (BP) and blueberry (BB) were nanoencapsulated using a natural biopolymer, lignin, to enhance stability and improve the biological properties of anthocyanins. The synthesized nanoparticles (A-LNPs) exhibited satisfactory encapsulation efficiency (92.32 to 72.26%), size (126.13 to 145.17 nm), PDI (0.140 to 0.172), and zeta potential (−36.27 to −34.10 mV), and potent antioxidant and antibacterial activity against <em>Staphylococcus aureus</em>. These novel A-LNPs were observed to be light stable during 28 days of storage at room temperature compared to purified anthocyanins. A-LNPs were further used as active ingredients to develop polyvinyl alcohol–polyethylene glycol (PVA–PEG)-based packaging films. These PVA–PEG-A-LNP films were observed to retain the quality parameters of tomatoes for at least 15 days of storage compared to tomatoes packed with PVA–PEG films and control samples. Such biocompatible packaging films can serve as alternative materials to conventional plastic.</p>","PeriodicalId":101198,"journal":{"name":"Sustainable Food Technology","volume":" 2","pages":" 414-424"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/fb/d4fb00342j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Food Technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fb/d4fb00342j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anthocyanin, a natural pigment from the flavonoid family, can be useful as a natural colorant in the packaging industry. Due to the sensitivity to light, pH and temperature of anthocyanin, its applications are restricted. In the present study, anthocyanins extracted from black wheat bran (WB), black plum (BP) and blueberry (BB) were nanoencapsulated using a natural biopolymer, lignin, to enhance stability and improve the biological properties of anthocyanins. The synthesized nanoparticles (A-LNPs) exhibited satisfactory encapsulation efficiency (92.32 to 72.26%), size (126.13 to 145.17 nm), PDI (0.140 to 0.172), and zeta potential (−36.27 to −34.10 mV), and potent antioxidant and antibacterial activity against Staphylococcus aureus. These novel A-LNPs were observed to be light stable during 28 days of storage at room temperature compared to purified anthocyanins. A-LNPs were further used as active ingredients to develop polyvinyl alcohol–polyethylene glycol (PVA–PEG)-based packaging films. These PVA–PEG-A-LNP films were observed to retain the quality parameters of tomatoes for at least 15 days of storage compared to tomatoes packed with PVA–PEG films and control samples. Such biocompatible packaging films can serve as alternative materials to conventional plastic.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Back cover Investigation of a deep learning-based waste recovery framework for sustainability and a clean environment using IoT Recent strategies for controlling the white mould fungal pathogen (Sclerotinia sclerotiorum) using gene silencing, botanical fungicides and nanomaterials Development of bionanocomposite packaging films based on lignin nanoencapsulated anthocyanins extracted from agro-waste for enhancing the post-harvest shelf life of tomatoes† Comparative modeling of microwave and ultrasound assisted extraction of phenolics and berberine from Coptis teeta Wall. rhizomes†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1