Methylphenidate promotes a frontoparietal-dominant brain state improving cognitive performance: a randomized trial.

IF 4.4 2区 医学 Q1 NEUROSCIENCES Journal of Neuroscience Pub Date : 2025-03-18 DOI:10.1523/JNEUROSCI.1693-24.2025
Weizheng Yan, Şükrü Barış Demiral, Dardo Tomasi, Rui Zhang, Peter Manza, Gene-Jack Wang, Nora D Volkow
{"title":"Methylphenidate promotes a frontoparietal-dominant brain state improving cognitive performance: a randomized trial.","authors":"Weizheng Yan, Şükrü Barış Demiral, Dardo Tomasi, Rui Zhang, Peter Manza, Gene-Jack Wang, Nora D Volkow","doi":"10.1523/JNEUROSCI.1693-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Methylphenidate (MP) is a widely used stimulant medication for the treatment of attention deficit hyperactivity disorder that enhances brain dopamine signaling and improves attention. However, how dopamine stimulation alters brain state dynamics to support improved attention during task performance is still unclear. To address this, we employed a multimodal neuroimaging approach combining positron emission tomography, functional magnetic resonance imaging, and behavioral tasks, to discover associations between dopamine signaling, brain dynamics, and cognition. Multimodal images were collected from 37 healthy adults under a single-blind, counterbalanced, placebo-controlled crossover study. Dynamic functional analysis was used to compare the alterations in dynamic features of brain states before and after MP. Subsequently, we analyzed the correlation between these brain state changes and baseline striatal D1 and D2 dopamine receptor (D1R, D2R) availability. We also examined alterations in dynamic brain states and their effects on visuospatial tasks. The results showed that MP primarily affected frontoparietal-dominant activated (FPN+), somatomotor-dominant activated (SOM+), and visual-dominant suppressed (VIS-) brain states. Specifically, the dwell time and fractional occupancy exhibited significant increases within the FPN+ and VIS- and an opposite trend within the SOM+. Furthermore, the increase of dwell time in FPN+, which was positively correlated with baseline striatal D1R availability, was also associated with quicker response in the 2-ball-track task, but not significantly for the 3-ball-track task. The findings suggest that MP's enhancement of brain states with FPN+ and VIS- while decreasing SOM+, in part through D1R signaling might underlie MP's improvement of attention for low demanding tasks in healthy populations.<b>Significance statement</b> Methylphenidate (MP) is primarily prescribed for Attention-Deficit/Hyperactivity Disorder (ADHD), but it is also misused as a cognitive enhancer by individuals seeking to improve cognitive performance. Using advanced brain imaging and behavioral tasks, this study investigates how MP affects dopamine signaling, brain activity and cognitive performance. Our results demonstrate that MP promoted a frontoparietal-dominant brain state which linked to improved task performance and D1 receptor availability. This research also introduces a multi-level neuroimaging approach to studying drug effects, offering a foundation for tailoring interventions by predicting individual variations in responses to medicine.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1693-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Methylphenidate (MP) is a widely used stimulant medication for the treatment of attention deficit hyperactivity disorder that enhances brain dopamine signaling and improves attention. However, how dopamine stimulation alters brain state dynamics to support improved attention during task performance is still unclear. To address this, we employed a multimodal neuroimaging approach combining positron emission tomography, functional magnetic resonance imaging, and behavioral tasks, to discover associations between dopamine signaling, brain dynamics, and cognition. Multimodal images were collected from 37 healthy adults under a single-blind, counterbalanced, placebo-controlled crossover study. Dynamic functional analysis was used to compare the alterations in dynamic features of brain states before and after MP. Subsequently, we analyzed the correlation between these brain state changes and baseline striatal D1 and D2 dopamine receptor (D1R, D2R) availability. We also examined alterations in dynamic brain states and their effects on visuospatial tasks. The results showed that MP primarily affected frontoparietal-dominant activated (FPN+), somatomotor-dominant activated (SOM+), and visual-dominant suppressed (VIS-) brain states. Specifically, the dwell time and fractional occupancy exhibited significant increases within the FPN+ and VIS- and an opposite trend within the SOM+. Furthermore, the increase of dwell time in FPN+, which was positively correlated with baseline striatal D1R availability, was also associated with quicker response in the 2-ball-track task, but not significantly for the 3-ball-track task. The findings suggest that MP's enhancement of brain states with FPN+ and VIS- while decreasing SOM+, in part through D1R signaling might underlie MP's improvement of attention for low demanding tasks in healthy populations.Significance statement Methylphenidate (MP) is primarily prescribed for Attention-Deficit/Hyperactivity Disorder (ADHD), but it is also misused as a cognitive enhancer by individuals seeking to improve cognitive performance. Using advanced brain imaging and behavioral tasks, this study investigates how MP affects dopamine signaling, brain activity and cognitive performance. Our results demonstrate that MP promoted a frontoparietal-dominant brain state which linked to improved task performance and D1 receptor availability. This research also introduces a multi-level neuroimaging approach to studying drug effects, offering a foundation for tailoring interventions by predicting individual variations in responses to medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
期刊最新文献
Contractions in human cerebellar-cortical manifold structure underlie motor reinforcement learning. Methylphenidate promotes a frontoparietal-dominant brain state improving cognitive performance: a randomized trial. Dissociation of value and confidence signals in the orbitofrontal cortex during decision-making: an intracerebral electrophysiology study in humans. Time-dependent Actions of Corticosterone on Infralimbic Cortex Pyramidal Neurons of Adult Male Rats. Neural dynamics of reselecting visual and motor contents in working memory after external interference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1