Time-dependent Actions of Corticosterone on Infralimbic Cortex Pyramidal Neurons of Adult Male Rats.

IF 4.4 2区 医学 Q1 NEUROSCIENCES Journal of Neuroscience Pub Date : 2025-03-18 DOI:10.1523/JNEUROSCI.0867-24.2025
Ana Franco-Villanueva, Neil C Ford, Rachel L Morano, Benjamin A Packard, Mark L Baccei, James P Herman
{"title":"Time-dependent Actions of Corticosterone on Infralimbic Cortex Pyramidal Neurons of Adult Male Rats.","authors":"Ana Franco-Villanueva, Neil C Ford, Rachel L Morano, Benjamin A Packard, Mark L Baccei, James P Herman","doi":"10.1523/JNEUROSCI.0867-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Responses to acute stress function to restore homeostasis. Hence, the study of neurophysiological responses to acute stress helps to understand mechanisms underlying adaptive coping in the face of environmental demands. The infralimbic medial prefrontal cortex (IL-mPFC) modulates the switch between behavioral coping styles, and acute stress enhances glutamatergic neurotransmission on mPFC projection neurons. However, the role of acute stress responses and stress hormones on the physiology of IL-mPFC projection neurons during adulthood remains underexplored. Here, we studied rapid and slow effects of acute corticosterone exposure on synaptic transmission and intrinsic membrane excitability in layer 5 pyramidal neurons of the IL (L5-IL PNs) in adult male rats using ex vivo whole-cell patch-clamp of mPFC slices. We report that corticosterone dynamically modulates the physiology of L5-IL PNs in a time-dependent manner. Specifically, corticosterone elicits a strong rapid shift of the excitatory-inhibitory balance towards enhanced excitation with mineralocorticoid (MR) and glucocorticoid receptors (GR) playing complementarily roles. Also, corticosterone rapidly and transently decreases the firing rate of L5-IL PNs via GR. Moreover, acute stress or corticosterone slowly enhance glutamatergic neurotransmission via MR and GR without modulating inhibitory neurotransmission or intrinsic excitability of adult L5-IL PNs. Our findings highlight the potential relevance of corticosterone effects on L5-IL PNs to promote a homeostatic response in adult male rats. First, corticosterone rapidly attenuates IL intrinsic excitability during the rapid initial phase of the acute stress response. Later on, corticosterone slowly restores IL output function over time to promote adaptive executive responses when context changes.<b>Significance statement</b> Corticosterone modulates physiological processes during stress to support adaptation. However, acute effects of corticosterone on stress control networks remains underexplored. Here, we explored mechanisms underlying corticosterone regulation of the activity of stress regulatory neurons of the infralimbic cortex (IL). Stress levels of corticosterone rapidly shift the excitatory-inhibitory balance of synaptic transmission towards enhanced excitation while diminishing firing of IL excitatory long-range neurons (IL PNs). Slow, lasting effects of corticosterone primarily target excitatory synaptic activity. Synaptic actions of glucocorticoids are cooperatively mediated by the mineralocorticoid (MRs) and glucocorticoid receptors (GRs), whereas the transient reduction in firing relies on GR in IL PNs. Thus, corticosterone provides an adaptive signal that controls IL output over time, promoting adaptive responses to environmental context.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0867-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Responses to acute stress function to restore homeostasis. Hence, the study of neurophysiological responses to acute stress helps to understand mechanisms underlying adaptive coping in the face of environmental demands. The infralimbic medial prefrontal cortex (IL-mPFC) modulates the switch between behavioral coping styles, and acute stress enhances glutamatergic neurotransmission on mPFC projection neurons. However, the role of acute stress responses and stress hormones on the physiology of IL-mPFC projection neurons during adulthood remains underexplored. Here, we studied rapid and slow effects of acute corticosterone exposure on synaptic transmission and intrinsic membrane excitability in layer 5 pyramidal neurons of the IL (L5-IL PNs) in adult male rats using ex vivo whole-cell patch-clamp of mPFC slices. We report that corticosterone dynamically modulates the physiology of L5-IL PNs in a time-dependent manner. Specifically, corticosterone elicits a strong rapid shift of the excitatory-inhibitory balance towards enhanced excitation with mineralocorticoid (MR) and glucocorticoid receptors (GR) playing complementarily roles. Also, corticosterone rapidly and transently decreases the firing rate of L5-IL PNs via GR. Moreover, acute stress or corticosterone slowly enhance glutamatergic neurotransmission via MR and GR without modulating inhibitory neurotransmission or intrinsic excitability of adult L5-IL PNs. Our findings highlight the potential relevance of corticosterone effects on L5-IL PNs to promote a homeostatic response in adult male rats. First, corticosterone rapidly attenuates IL intrinsic excitability during the rapid initial phase of the acute stress response. Later on, corticosterone slowly restores IL output function over time to promote adaptive executive responses when context changes.Significance statement Corticosterone modulates physiological processes during stress to support adaptation. However, acute effects of corticosterone on stress control networks remains underexplored. Here, we explored mechanisms underlying corticosterone regulation of the activity of stress regulatory neurons of the infralimbic cortex (IL). Stress levels of corticosterone rapidly shift the excitatory-inhibitory balance of synaptic transmission towards enhanced excitation while diminishing firing of IL excitatory long-range neurons (IL PNs). Slow, lasting effects of corticosterone primarily target excitatory synaptic activity. Synaptic actions of glucocorticoids are cooperatively mediated by the mineralocorticoid (MRs) and glucocorticoid receptors (GRs), whereas the transient reduction in firing relies on GR in IL PNs. Thus, corticosterone provides an adaptive signal that controls IL output over time, promoting adaptive responses to environmental context.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
期刊最新文献
Contractions in human cerebellar-cortical manifold structure underlie motor reinforcement learning. Methylphenidate promotes a frontoparietal-dominant brain state improving cognitive performance: a randomized trial. Dissociation of value and confidence signals in the orbitofrontal cortex during decision-making: an intracerebral electrophysiology study in humans. Time-dependent Actions of Corticosterone on Infralimbic Cortex Pyramidal Neurons of Adult Male Rats. Neural dynamics of reselecting visual and motor contents in working memory after external interference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1