J. Brubach, T.-Y. Huang, T. Borrely, C. Greenhill, J. Walrath, G. Fedele, Y.-C. Yang, A. Zimmerman, R. S. Goldman
{"title":"Dopant vs free carrier concentrations in InAs/GaAs semiconductor quantum dots","authors":"J. Brubach, T.-Y. Huang, T. Borrely, C. Greenhill, J. Walrath, G. Fedele, Y.-C. Yang, A. Zimmerman, R. S. Goldman","doi":"10.1063/5.0244331","DOIUrl":null,"url":null,"abstract":"Semiconductor quantum dots (QDs) are nanostructures that can enhance the performance of electronic devices due to their 3D quantization. Typically, heterovalent impurities, or dopants, are added to semiconducting QDs to provide extra electrons and improve conductivity. Since each QD is expected to contain a few dopants, the extra electrons and their parent dopants have been difficult to locate. In this work, we investigate the spatial distribution of the extra electrons and their parent donors in epitaxial InAs/GaAs QDs using local-electrode atom-probe tomography and self-consistent Schrödinger–Poisson simulations in the effective mass approximation. Although dopants are provided in both layers, the ionized donors primarily reside outside of the QDs, providing extra electrons that are contained within the QDs. Indeed, due to the quantum confinement-induced enhancement of the donor ionization energy within the QDs, a lower fraction of dopants within the QDs are ionized. These findings suggest a pathway toward the development of 3D modulation-doped nanostructures.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"25 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0244331","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Semiconductor quantum dots (QDs) are nanostructures that can enhance the performance of electronic devices due to their 3D quantization. Typically, heterovalent impurities, or dopants, are added to semiconducting QDs to provide extra electrons and improve conductivity. Since each QD is expected to contain a few dopants, the extra electrons and their parent dopants have been difficult to locate. In this work, we investigate the spatial distribution of the extra electrons and their parent donors in epitaxial InAs/GaAs QDs using local-electrode atom-probe tomography and self-consistent Schrödinger–Poisson simulations in the effective mass approximation. Although dopants are provided in both layers, the ionized donors primarily reside outside of the QDs, providing extra electrons that are contained within the QDs. Indeed, due to the quantum confinement-induced enhancement of the donor ionization energy within the QDs, a lower fraction of dopants within the QDs are ionized. These findings suggest a pathway toward the development of 3D modulation-doped nanostructures.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.