Dopant vs free carrier concentrations in InAs/GaAs semiconductor quantum dots

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2025-03-18 DOI:10.1063/5.0244331
J. Brubach, T.-Y. Huang, T. Borrely, C. Greenhill, J. Walrath, G. Fedele, Y.-C. Yang, A. Zimmerman, R. S. Goldman
{"title":"Dopant vs free carrier concentrations in InAs/GaAs semiconductor quantum dots","authors":"J. Brubach, T.-Y. Huang, T. Borrely, C. Greenhill, J. Walrath, G. Fedele, Y.-C. Yang, A. Zimmerman, R. S. Goldman","doi":"10.1063/5.0244331","DOIUrl":null,"url":null,"abstract":"Semiconductor quantum dots (QDs) are nanostructures that can enhance the performance of electronic devices due to their 3D quantization. Typically, heterovalent impurities, or dopants, are added to semiconducting QDs to provide extra electrons and improve conductivity. Since each QD is expected to contain a few dopants, the extra electrons and their parent dopants have been difficult to locate. In this work, we investigate the spatial distribution of the extra electrons and their parent donors in epitaxial InAs/GaAs QDs using local-electrode atom-probe tomography and self-consistent Schrödinger–Poisson simulations in the effective mass approximation. Although dopants are provided in both layers, the ionized donors primarily reside outside of the QDs, providing extra electrons that are contained within the QDs. Indeed, due to the quantum confinement-induced enhancement of the donor ionization energy within the QDs, a lower fraction of dopants within the QDs are ionized. These findings suggest a pathway toward the development of 3D modulation-doped nanostructures.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"25 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0244331","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Semiconductor quantum dots (QDs) are nanostructures that can enhance the performance of electronic devices due to their 3D quantization. Typically, heterovalent impurities, or dopants, are added to semiconducting QDs to provide extra electrons and improve conductivity. Since each QD is expected to contain a few dopants, the extra electrons and their parent dopants have been difficult to locate. In this work, we investigate the spatial distribution of the extra electrons and their parent donors in epitaxial InAs/GaAs QDs using local-electrode atom-probe tomography and self-consistent Schrödinger–Poisson simulations in the effective mass approximation. Although dopants are provided in both layers, the ionized donors primarily reside outside of the QDs, providing extra electrons that are contained within the QDs. Indeed, due to the quantum confinement-induced enhancement of the donor ionization energy within the QDs, a lower fraction of dopants within the QDs are ionized. These findings suggest a pathway toward the development of 3D modulation-doped nanostructures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Impact of Proactive Palliative Medicine in the Intensive Care Unit at a Community Teaching Hospital
IF 4.7 2区 医学Journal of pain and symptom managementPub Date : 2010-02-01 DOI: 10.1016/j.jpainsymman.2009.11.259
Kathryn Walker PharmD BCPS CPE, Tanya Telegadis PharmD, Heon Soo Yi MS, Rene Mayo LSWA, Sarah Bayne FNP, Christopher Kearney MD
Nosocomial infection in the Intensive Care Unit at Teaching Hospital Karapitiya, Galle; an audit
IF 0 Galle Medical JournalPub Date : 2011-10-30 DOI: 10.4038/gmj.v16i2.3746
A. Gunaratne, D. Vidanagama, W. Wijayaratne, S. Palanasinghe
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Enhanced Curie temperature in atomically thin perpendicular magnetic anisotropic oxide film through interfacial engineering Ultra-long-range Bessel beams via leaky waves with mitigated open stopband Single-shot Fourier ptychography using polarization-encoded illumination Decoding the effect of defect and domain on piezoelectric properties of K0.5Na0.5NbO3-based single crystals Morphological and strain engineering of SiGe cladded channels for stacked nanowire transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1