COVID-19 Public Health Communication on X (Formerly Twitter): Cross-Sectional Study of Message Type, Sentiment, and Source.

IF 2 Q3 HEALTH CARE SCIENCES & SERVICES JMIR Formative Research Pub Date : 2025-03-19 DOI:10.2196/59687
Sana Parveen, Agustin Garcia Pereira, Nathaly Garzon-Orjuela, Patricia McHugh, Aswathi Surendran, Heike Vornhagen, Akke Vellinga
{"title":"COVID-19 Public Health Communication on X (Formerly Twitter): Cross-Sectional Study of Message Type, Sentiment, and Source.","authors":"Sana Parveen, Agustin Garcia Pereira, Nathaly Garzon-Orjuela, Patricia McHugh, Aswathi Surendran, Heike Vornhagen, Akke Vellinga","doi":"10.2196/59687","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Social media can be used to quickly disseminate focused public health messages, increasing message reach and interaction with the public. Social media can also be an indicator of people's emotions and concerns. Social media data text mining can be used for disease forecasting and understanding public awareness of health-related concerns. Limited studies explore the impact of type, sentiment and source of tweets on engagement. Thus, it is crucial to research how the general public reacts to various kinds of messages from different sources.</p><p><strong>Objective: </strong>The objective of this paper was to determine the association between message type, user (source) and sentiment of tweets and public engagement during the COVID-19 pandemic.</p><p><strong>Methods: </strong>For this study, 867,485 tweets were extracted from January 1, 2020 to March 31, 2022 from Ireland and the United Kingdom. A 4-step analytical process was undertaken, encompassing sentiment analysis, bio-classification (user), message classification and statistical analysis. A combination of manual content analysis with abductive coding and machine learning models were used to categorize sentiment, user category and message type for every tweet. A zero-inflated negative binomial model was applied to explore the most engaging content mix.</p><p><strong>Results: </strong>Our analysis resulted in 12 user categories, 6 message categories, and 3 sentiment classes. Personal stories and positive messages have the most engagement, even though not for every user group; known persons and influencers have the most engagement with humorous tweets. Health professionals receive more engagement with advocacy, personal stories/statements and humor-based tweets. Health institutes observe higher engagement with advocacy, personal stories/statements, and tweets with a positive sentiment. Personal stories/statements are not the most often tweeted category (22%) but have the highest engagement (27%). Messages centered on shock/disgust/fear-based (32%) have a 21% engagement. The frequency of informative/educational communications is high (33%) and their engagement is 16%. Advocacy message (8%) receive 9% engagement. Humor and opportunistic messages have engagements of 4% and 0.5% and low frequenciesof 5% and 1%, respectively. This study suggests the optimum mix of message type and sentiment that each user category should use to get more engagement.</p><p><strong>Conclusions: </strong>This study provides comprehensive insight into Twitter (rebranded as X in 2023) users' responses toward various message type and sources. Our study shows that audience engages with personal stories and positive messages the most. Our findings provide valuable guidance for social media-based public health campaigns in developing messages for maximum engagement.</p>","PeriodicalId":14841,"journal":{"name":"JMIR Formative Research","volume":"9 ","pages":"e59687"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Formative Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/59687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Social media can be used to quickly disseminate focused public health messages, increasing message reach and interaction with the public. Social media can also be an indicator of people's emotions and concerns. Social media data text mining can be used for disease forecasting and understanding public awareness of health-related concerns. Limited studies explore the impact of type, sentiment and source of tweets on engagement. Thus, it is crucial to research how the general public reacts to various kinds of messages from different sources.

Objective: The objective of this paper was to determine the association between message type, user (source) and sentiment of tweets and public engagement during the COVID-19 pandemic.

Methods: For this study, 867,485 tweets were extracted from January 1, 2020 to March 31, 2022 from Ireland and the United Kingdom. A 4-step analytical process was undertaken, encompassing sentiment analysis, bio-classification (user), message classification and statistical analysis. A combination of manual content analysis with abductive coding and machine learning models were used to categorize sentiment, user category and message type for every tweet. A zero-inflated negative binomial model was applied to explore the most engaging content mix.

Results: Our analysis resulted in 12 user categories, 6 message categories, and 3 sentiment classes. Personal stories and positive messages have the most engagement, even though not for every user group; known persons and influencers have the most engagement with humorous tweets. Health professionals receive more engagement with advocacy, personal stories/statements and humor-based tweets. Health institutes observe higher engagement with advocacy, personal stories/statements, and tweets with a positive sentiment. Personal stories/statements are not the most often tweeted category (22%) but have the highest engagement (27%). Messages centered on shock/disgust/fear-based (32%) have a 21% engagement. The frequency of informative/educational communications is high (33%) and their engagement is 16%. Advocacy message (8%) receive 9% engagement. Humor and opportunistic messages have engagements of 4% and 0.5% and low frequenciesof 5% and 1%, respectively. This study suggests the optimum mix of message type and sentiment that each user category should use to get more engagement.

Conclusions: This study provides comprehensive insight into Twitter (rebranded as X in 2023) users' responses toward various message type and sources. Our study shows that audience engages with personal stories and positive messages the most. Our findings provide valuable guidance for social media-based public health campaigns in developing messages for maximum engagement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Formative Research
JMIR Formative Research Medicine-Medicine (miscellaneous)
CiteScore
2.70
自引率
9.10%
发文量
579
审稿时长
12 weeks
期刊最新文献
COVID-19 Public Health Communication on X (Formerly Twitter): Cross-Sectional Study of Message Type, Sentiment, and Source. A Brief Cognitive Behavioral Therapy-Based Digital Intervention for Reducing Hazardous Alcohol Use in South Korea: Development and Prospective Pilot Study. Patient and Provider Perspectives of a Web-Based Intervention to Support Symptom Management After Radioactive Iodine Treatment for Differentiated Thyroid Cancer: Qualitative Study. Synthetic Data-Driven Approaches for Chinese Medical Abstract Sentence Classification: Computational Study. Designing a Digital Intervention to Increase Human Milk Feeding Among Black Mothers: Qualitative Study of Acceptability and Preferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1