Effectiveness of radiation protection educational material during angiography using visualization of scattered radiation by augmented reality technique.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiological Physics and Technology Pub Date : 2025-03-19 DOI:10.1007/s12194-025-00899-x
Koki Noguchi, Toshioh Fujibuchi, Donghee Han
{"title":"Effectiveness of radiation protection educational material during angiography using visualization of scattered radiation by augmented reality technique.","authors":"Koki Noguchi, Toshioh Fujibuchi, Donghee Han","doi":"10.1007/s12194-025-00899-x","DOIUrl":null,"url":null,"abstract":"<p><p>In medical settings, radiation exposure among radiation workers is a significant concern, and understanding radiation protection is crucial. We developed and evaluated radiation protection educational materials using an augmented reality application for visualizing scatter radiation. The evaluation included a true/false quiz, a questionnaire based on the ARCS (Attention, Relevance, Confidence, and Satisfaction) model, and open-ended responses. The correct response rates for the true/false quiz were 65.5% and 72.4% for two questions regarding the effect of C-arm angle changes on scatter radiation distribution. The correct response rate for all other questions was 100%. Understanding how changes in C-arm angles specifically affect angiographic procedures proved more challenging than other topics. The ARCS model evaluation of learning motivation revealed average scores of 4.15 for Attention, 3.91 for Relevance, 3.93 for Confidence, and 4.28 for Satisfaction in the scale 5.00.These results suggest that the developed materials are effective in enhancing motivation. However, open-ended responses identified areas for improvement in the application's usability, particularly regarding ease of operation. While the materials successfully enhance motivation, further refinements are needed to address the variation in correct response rates across different scenarios and the usability challenges of the application.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00899-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

In medical settings, radiation exposure among radiation workers is a significant concern, and understanding radiation protection is crucial. We developed and evaluated radiation protection educational materials using an augmented reality application for visualizing scatter radiation. The evaluation included a true/false quiz, a questionnaire based on the ARCS (Attention, Relevance, Confidence, and Satisfaction) model, and open-ended responses. The correct response rates for the true/false quiz were 65.5% and 72.4% for two questions regarding the effect of C-arm angle changes on scatter radiation distribution. The correct response rate for all other questions was 100%. Understanding how changes in C-arm angles specifically affect angiographic procedures proved more challenging than other topics. The ARCS model evaluation of learning motivation revealed average scores of 4.15 for Attention, 3.91 for Relevance, 3.93 for Confidence, and 4.28 for Satisfaction in the scale 5.00.These results suggest that the developed materials are effective in enhancing motivation. However, open-ended responses identified areas for improvement in the application's usability, particularly regarding ease of operation. While the materials successfully enhance motivation, further refinements are needed to address the variation in correct response rates across different scenarios and the usability challenges of the application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
期刊最新文献
A study of differences in absorbed dose estimates by images used in dosimetry of Lu-177-DOTATATE therapy. Effectiveness of radiation protection educational material during angiography using visualization of scattered radiation by augmented reality technique. Semantic segmentation for individual thigh skeletal muscles of athletes on magnetic resonance images. A multiple regression model for peak skin dose using principal component analysis in interventional radiology. A multi-institutional survey on technical variations in total body irradiation in Japan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1