Semantic segmentation for individual thigh skeletal muscles of athletes on magnetic resonance images.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiological Physics and Technology Pub Date : 2025-03-19 DOI:10.1007/s12194-025-00901-6
Jun Kasahara, Hiroki Ozaki, Takeo Matsubayashi, Hideyuki Takahashi, Ryohei Nakayama
{"title":"Semantic segmentation for individual thigh skeletal muscles of athletes on magnetic resonance images.","authors":"Jun Kasahara, Hiroki Ozaki, Takeo Matsubayashi, Hideyuki Takahashi, Ryohei Nakayama","doi":"10.1007/s12194-025-00901-6","DOIUrl":null,"url":null,"abstract":"<p><p>The skeletal muscles that athletes should train vary depending on their discipline and position. Therefore, individual skeletal muscle cross-sectional area assessment is important in the development of training strategies. To measure the cross-sectional area of skeletal muscle, manual segmentation of each muscle is performed using magnetic resonance (MR) imaging. This task is time-consuming and requires significant effort. Additionally, interobserver variability can sometimes be problematic. The purpose of this study was to develop an automated computerized method for semantic segmentation of individual thigh skeletal muscles from MR images of athletes. Our database consisted of 697 images from the thighs of 697 elite athletes. The images were randomly divided into a training dataset (70%), a validation dataset (10%), and a test dataset (20%). A label image was generated for each image by manually annotating 15 object classes: 12 different skeletal muscles, fat, bones, and vessels and nerves. Using the validation dataset, DeepLab v3+ was chosen from three different semantic segmentation models as a base model for segmenting individual thigh skeletal muscles. The feature extractor in DeepLab v3+ was also optimized to ResNet50. The mean Jaccard index and Dice index for the proposed method were 0.853 and 0.916, respectively, which were significantly higher than those from conventional DeepLab v3+ (Jaccard index: 0.810, p < .001; Dice index: 0.887, p < .001). The proposed method achieved a mean area error for 15 objective classes of 3.12%, useful in the assessment of skeletal muscle cross-sectional area from MR images.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00901-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The skeletal muscles that athletes should train vary depending on their discipline and position. Therefore, individual skeletal muscle cross-sectional area assessment is important in the development of training strategies. To measure the cross-sectional area of skeletal muscle, manual segmentation of each muscle is performed using magnetic resonance (MR) imaging. This task is time-consuming and requires significant effort. Additionally, interobserver variability can sometimes be problematic. The purpose of this study was to develop an automated computerized method for semantic segmentation of individual thigh skeletal muscles from MR images of athletes. Our database consisted of 697 images from the thighs of 697 elite athletes. The images were randomly divided into a training dataset (70%), a validation dataset (10%), and a test dataset (20%). A label image was generated for each image by manually annotating 15 object classes: 12 different skeletal muscles, fat, bones, and vessels and nerves. Using the validation dataset, DeepLab v3+ was chosen from three different semantic segmentation models as a base model for segmenting individual thigh skeletal muscles. The feature extractor in DeepLab v3+ was also optimized to ResNet50. The mean Jaccard index and Dice index for the proposed method were 0.853 and 0.916, respectively, which were significantly higher than those from conventional DeepLab v3+ (Jaccard index: 0.810, p < .001; Dice index: 0.887, p < .001). The proposed method achieved a mean area error for 15 objective classes of 3.12%, useful in the assessment of skeletal muscle cross-sectional area from MR images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
期刊最新文献
A study of differences in absorbed dose estimates by images used in dosimetry of Lu-177-DOTATATE therapy. Effectiveness of radiation protection educational material during angiography using visualization of scattered radiation by augmented reality technique. Semantic segmentation for individual thigh skeletal muscles of athletes on magnetic resonance images. A multiple regression model for peak skin dose using principal component analysis in interventional radiology. A multi-institutional survey on technical variations in total body irradiation in Japan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1